

CS 5633 -- Spring 2004

Minimum Spanning Trees

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Graphs (review)

Definition. A *directed graph* (*digraph*) G = (V, E) is an ordered pair consisting of

- a set *V* of *vertices* (singular: *vertex*),
- a set $E \subseteq V \times V$ of *edges*.

In an *undirected graph* G = (V, E), the edge set *E* consists of *unordered* pairs of vertices.

In either case, we have $|E| = O(|V|^2)$. Moreover, if *G* is connected, then $|E| \ge |V| - 1$.

(Review CLRS, Appendix B.4 and B.5.)

Adjacency-matrix representation

The *adjacency matrix* of a graph G = (V, E), where $V = \{1, 2, ..., n\}$, is the matrix A[1 ... n, 1 ... n] given by

$$A[i,j] = \begin{cases} 1 & \text{if } (i,j) \in \mathcal{E}, \\ 0 & \text{if } (i,j) \notin \mathcal{E}. \end{cases}$$

 $\Theta(|V|^2)$ storage \Rightarrow *dense* representation.

Adjacency-list representation

An *adjacency list* of a vertex $v \in V$ is the list Adj[v] of vertices adjacent to v.

$$Adj[1] = \{2, 3\}$$

 $Adj[2] = \{3\}$
 $Adj[3] = \{\}$
 $Adj[4] = \{3\}$

For undirected graphs, |Adj[v]| = degree(v). For digraphs, |Adj[v]| = out-degree(v).

Adjacency-list representation

Handshaking Lemma:

- For undirected graphs: $\sum_{v \in V} degree(v) = 2|E|$
- For digraphs:

 $\sum_{v \in V} in-degree(v) + \sum_{v \in V} out-degree(v) = 2 \mid E \mid$

 \Rightarrow adjacency lists use $\Theta(|V| + |E|)$ storage \Rightarrow a *sparse* representation

Minimum spanning trees

- **Input:** A connected, undirected graph G = (V, E) with weight function $w : E \to \mathbb{R}$.
- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A *spanning tree* T — a tree that connects all vertices — of minimum weight:

$$w(T) = \sum_{(u,v)\in T} w(u,v).$$

Example of MST

Hallmark for "greedy" algorithms

Greedy-choice property A locally optimal choice is globally optimal.

Theorem. Let *T* be the MST of G = (V, E), and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting *A* to $V \setminus A$. Then, $(u, v) \in T$.

Consider the unique simple path from u to v in T.

Proof. Suppose $(u, v) \notin T$. Cut and paste.

T: $e \in A$ $e \in V - A$ (u, v) = least-weight edge (u, v) = least-weight edge(u, v) = least-weight edge

Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \setminus A$.

Proof. Suppose $(u, v) \notin T$. Cut and paste.

T': V = least-weight edge V = V - A

Consider the unique simple path from u to v in T. Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in V - A. A lighter-weight spanning tree than T results.

Prim's algorithm

IDEA: Maintain $V \setminus A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A. $Q \leftarrow V$ $kev[v] \leftarrow \infty$ for all $v \in V$ $key[s] \leftarrow 0$ for some arbitrary $s \in V$ while $Q \neq \emptyset$ **do** $u \leftarrow \text{EXTRACT-MIN}(Q)$ for each $v \in Adj[u]$ **do if** $v \in Q$ and w(u, v) < key[v]► DECREASE-KEY then $key[v] \leftarrow w(u, v)$ $\pi[v] \leftarrow u$ At the end, $\{(v, \pi[v])\}$ forms the MST. 3/22/04CS 5633 Analysis of Algorithms 14

9

15

Example of Prim's algorithm

Example of Prim's algorithm

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit DECREASE-KEY's. Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

Analysis of Prim (continued)

Time = $\Theta(|V|) \cdot T_{\text{EXTRACT-MIN}} + \Theta(|E|) \cdot T_{\text{DECREASE-KEY}}$

<i>Q</i>	T _{EXTRACT-MIN}	T _{DECREASE-KEY}	Total
array	O(V)	<i>O</i> (1)	$O(V ^2)$
binary heap	$O(\log V)$	$O(\log V)$	$O(E \log V)$
Fibonacci heap	i O(log V) amortized	O(1) O(A amortized	$ V = V \log V $ worst case

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the *disjoint-set data structure* (Lecture 20).
- Running time = $O(|E| \log |V|)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- O(|V| + |E|) expected time.