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Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge 
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).  
Moreover, if G is connected, then  |E | ≥ |V | – 1.  

(Review CLRS, Appendix B.4 and B.5.)
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Adjacency-matrix 
representation

The adjacency matrix of a graph G = (V, E), where 
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(|V| 2) storage 
⇒ dense
representation.
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Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).
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Adjacency-list representation

Handshaking Lemma:
• For undirected graphs:

∑v∈V degree(v) = 2 |E |
• For digraphs:

∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

⇒ adjacency lists use Θ(|V| + |E|) storage 
⇒ a sparse representation
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Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are 

distinct. (CLRS covers the general case.)

∑
∈
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Output: A spanning tree T — a tree that connects 
all vertices — of minimum weight:
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Example of MST
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Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice 

is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let 
A ⊆ V.  Suppose that (u, v) ∈ E is the least-weight 
edge connecting A to V \ A. Then, (u, v) ∈ T.
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Example of MST
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Theorem. Let T be the MST of G = (V, E), and let 
A ⊆ V.  Suppose that (u, v) ∈ E is the least-weight 
edge connecting A to V \ A. Then, (u, v) ∈ T.

A
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T:

u

v

(u, v) = least-weight edge 
connecting A to V \ A
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

Consider the unique simple path from u to v in T.  

(u, v) = least-weight edge 
connecting A to V – A

v
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u
(u, v) = least-weight edge 
connecting A to V – A

v

Consider the unique simple path from u to v in T.  
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V \ A.
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Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T ′:

u
(u, v) = least-weight edge 
connecting A to V – A

v

Consider the unique simple path from u to v in T.  
Swap (u, v) with the first edge on this path that 
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.
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Prim’s algorithm
IDEA: Maintain V \ A as a priority queue Q.  Key 
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v) ⊳ DECREASE-KEY

π[v] ← u

At the end, {(v, π[v])} forms the MST.
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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∈ V \ A
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Example of Prim’s algorithm
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Handshaking Lemma ⇒Θ(|E|) implicit DECREASE-KEY’s.

Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)

π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(|V|)
total

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY
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Analysis of Prim (continued)

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)
binary 
heap O(log |V|) O(log |V|) O(|E| log |V|)

Fibonacci 
heap

O(log |V|)
amortized

O(1)
amortized

O(|E| + |V| log |V|)
worst case
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MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 20).
• Running time = O(|E| log |V|).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(|V| + |E|) expected time.


