CS 5633 -- Spring 2004

Minimum Spanning Trees
 Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Graphs (review)

Definition. A directed graph (digraph)
$G=(V, E)$ is an ordered pair consisting of

- a set V of vertices (singular: vertex),
- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)$.
Moreover, if G is connected, then $|E| \geq|V|-1$.
(Review CLRS, Appendix B. 4 and B.5.)

ALGORITHMS
 Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E} \\ 0 & \text { if }(i, j) \notin \mathrm{E}\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
\operatorname{Adj}[1] & =\{2,3\} \\
\operatorname{Adj}[2] & =\{3\} \\
\operatorname{Adj}[3] & =\{ \} \\
\operatorname{Adj}[4] & =\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$. For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Adjacency-list representation

Handshaking Lemma:

- For undirected graphs:

$$
\sum_{v \in V} \text { degree }(v)=2|\mathrm{E}|
$$

- For digraphs:

$$
\sum_{v \in V} \text { in-degree(v) }+\sum_{v \in V} \text { out-degree }(v)=2|\mathrm{E}|
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation

Minimum spanning trees

Input: A connected, undirected graph $G=(V, E)$ with weight function $w: E \rightarrow \mathrm{R}$.

- For simplicity, assume that all edge weights are distinct. (CLRS covers the general case.)

Output: A spanning tree T - a tree that connects all vertices - of minimum weight:

$$
w(T)=\sum_{(u, v) \in T} w(u, v) .
$$

Hallmark for "greedy" algorithms

Theorem. Let T be the MST of $G=(V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \backslash A$. Then, $(u, v) \in T$.

Example of MST

Theorem. Let T be the MST of $G=(V, E)$, and let $A \subseteq V$. Suppose that $(u, v) \in E$ is the least-weight edge connecting A to $V \backslash A$. Then, $(u, v) \in T$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V \backslash A$

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :
$0 \in A$

- $\in V-A$

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T :

- $\in A$
- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V \backslash A$.

Proof of theorem

Proof. Suppose $(u, v) \notin T$. Cut and paste.
T^{\prime} :

- $\in A$
- $\in V-A$
$(u, v)=$ least-weight edge connecting A to $V-A$
Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that connects a vertex in A to a vertex in $V-A$.
A lighter-weight spanning tree than T results. \square

Prim's algorithm

Idea: Maintain $V \backslash A$ as a priority queue Q. Key each vertex in Q with the weight of the leastweight edge connecting it to a vertex in A.
$Q \leftarrow V$
$k e y[v] \leftarrow \infty$ for all $v \in V$
$k e y[s] \leftarrow 0$ for some arbitrary $s \in V$
while $Q \neq \varnothing$
do $u \leftarrow$ EXTRACT-MIN (Q)
for each $v \in \operatorname{Adj}[u]$
do if $v \in Q$ and $w(u, v)<k e y[v]$
then key $[v] \leftarrow w(u, v) \quad \triangleright$ DECREASE-KEY

$$
\pi[v] \leftarrow u
$$

At the end, $\{(v, \pi[v])\}$ forms the MST.

…․ Example of Prim's algorithm

ㅊ..… Example of Prim's algorithm

…․ Example of Prim's algorithm

ㅊ..… Example of Prim's algorithm

Analysis of Prim

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's. Time $=\Theta(|V|) \cdot T_{\text {Extract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Analysis of Prim (continued)

Time $=\Theta(|V|) \cdot T_{\text {Extract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Q $\quad T_{\text {Extract-Min }} \quad T_{\text {Decrease-Key }} \quad$ Total

$O(|V|)$
$O(1)$
$O\left(|V|^{2}\right)$
binary
heap

$$
O(\log |V|)
$$

$O(\log |V|)$
$O(|E| \log |V|)$
Fibonacci $O(\log |V|)$ amortized amortized worst case

MST algorithms

Kruskal's algorithm (see CLRS):

- Uses the disjoint-set data structure (Lecture 20).
- Running time $=O(|E| \log |V|)$.

Best to date:

- Karger, Klein, and Tarjan [1993].
- Randomized algorithm.
- $O(|V|+|E|)$ expected time.

