
CS 5633 Analysis of Algorithms 13/22/04

CS 5633 -- Spring 2004

Minimum Spanning Trees
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 23/22/04

Graphs (review)
Definition. A directed graph (digraph)
G = (V, E) is an ordered pair consisting of
• a set V of vertices (singular: vertex),
• a set E ⊆ V × V of edges.
In an undirected graph G = (V, E), the edge
set E consists of unordered pairs of vertices.
In either case, we have |E | = O(|V| 2).
Moreover, if G is connected, then |E | ≥ |V | – 1.

(Review CLRS, Appendix B.4 and B.5.)

CS 5633 Analysis of Algorithms 33/22/04

Adjacency-matrix
representation

The adjacency matrix of a graph G = (V, E), where
V = {1, 2, …, n}, is the matrix A[1 . . n, 1 . . n]
given by

A[i, j] = 1 if (i, j) ∈ E,
0 if (i, j) ∉ E.

22 11

33 44

A 1 2 3 4
1
2
3
4

0 1 1 0
0 0 1 0
0 0 0 0
0 0 1 0

Θ(|V| 2) storage
⇒ dense
representation.

CS 5633 Analysis of Algorithms 43/22/04

Adjacency-list representation
An adjacency list of a vertex v ∈ V is the list Adj[v]
of vertices adjacent to v.

22 11

33 44

Adj[1] = {2, 3}
Adj[2] = {3}
Adj[3] = {}
Adj[4] = {3}

For undirected graphs, |Adj[v] | = degree(v).
For digraphs, | Adj[v] | = out-degree(v).

CS 5633 Analysis of Algorithms 53/22/04

Adjacency-list representation

Handshaking Lemma:
• For undirected graphs:

∑v∈V degree(v) = 2 |E |
• For digraphs:

∑v∈V in-degree(v) + ∑v∈V out-degree(v) = 2 | E |

⇒ adjacency lists use Θ(|V| + |E|) storage
⇒ a sparse representation

CS 5633 Analysis of Algorithms 63/22/04

Minimum spanning trees

Input: A connected, undirected graph G = (V, E)
with weight function w : E → R.
• For simplicity, assume that all edge weights are

distinct. (CLRS covers the general case.)

∑
∈

=
Tvu

vuwTw
),(

),()(.

Output: A spanning tree T — a tree that connects
all vertices — of minimum weight:

CS 5633 Analysis of Algorithms 73/22/04

Example of MST

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 83/22/04

Hallmark for “greedy”
algorithms

Greedy-choice property
A locally optimal choice

is globally optimal.

Theorem. Let T be the MST of G = (V, E), and let
A ⊆ V. Suppose that (u, v) ∈ E is the least-weight
edge connecting A to V \ A. Then, (u, v) ∈ T.

CS 5633 Analysis of Algorithms 93/22/04

Example of MST

6 12
5

14

3

8

10

15

9

7

Theorem. Let T be the MST of G = (V, E), and let
A ⊆ V. Suppose that (u, v) ∈ E is the least-weight
edge connecting A to V \ A. Then, (u, v) ∈ T.

A

CS 5633 Analysis of Algorithms 103/22/04

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V \ A

T:

u

v

(u, v) = least-weight edge
connecting A to V \ A

CS 5633 Analysis of Algorithms 113/22/04

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u

Consider the unique simple path from u to v in T.

(u, v) = least-weight edge
connecting A to V – A

v

CS 5633 Analysis of Algorithms 123/22/04

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V \ A.

CS 5633 Analysis of Algorithms 133/22/04

Proof of theorem
Proof. Suppose (u, v) ∉ T. Cut and paste.

∈ A
∈ V – A

T ′:

u
(u, v) = least-weight edge
connecting A to V – A

v

Consider the unique simple path from u to v in T.
Swap (u, v) with the first edge on this path that
connects a vertex in A to a vertex in V – A.
A lighter-weight spanning tree than T results.

CS 5633 Analysis of Algorithms 143/22/04

Prim’s algorithm
IDEA: Maintain V \ A as a priority queue Q. Key
each vertex in Q with the weight of the least-
weight edge connecting it to a vertex in A.
Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v) ⊳ DECREASE-KEY

π[v] ← u

At the end, {(v, π[v])} forms the MST.

CS 5633 Analysis of Algorithms 153/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 163/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ ∞∞

∞∞ 00

∞∞

∞∞

∞∞

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 173/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 183/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

∞∞

∞∞ 77

∞∞ 00

1010

∞∞

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 193/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 203/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

1212

55 77

∞∞ 00

1010

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 213/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 223/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 233/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

1414 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 243/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 253/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 263/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 273/22/04

Example of Prim’s algorithm

∈ A
∈ V \ A

66

55 77

33 00

88

99

1515

6 12
5

14

3

8

10

15

9

7

CS 5633 Analysis of Algorithms 283/22/04

Handshaking Lemma ⇒Θ(|E|) implicit DECREASE-KEY’s.

Q ← V
key[v] ←∞ for all v ∈ V
key[s] ← 0 for some arbitrary s ∈ V
while Q ≠ ∅

do u ← EXTRACT-MIN(Q)
for each v ∈ Adj[u]

do if v ∈ Q and w(u, v) < key[v]
then key[v] ← w(u, v)

π[v] ← u

Analysis of Prim

degree(u)
times

|V |
times

Θ(|V|)
total

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY

CS 5633 Analysis of Algorithms 293/22/04

Analysis of Prim (continued)

Time = Θ(|V|)·TEXTRACT-MIN + Θ(|E|)·TDECREASE-KEY

Q TEXTRACT-MIN TDECREASE-KEY Total

array O(|V|) O(1) O(|V|2)
binary
heap O(log |V|) O(log |V|) O(|E| log |V|)

Fibonacci
heap

O(log |V|)
amortized

O(1)
amortized

O(|E| + |V| log |V|)
worst case

CS 5633 Analysis of Algorithms 303/22/04

MST algorithms

Kruskal’s algorithm (see CLRS):
• Uses the disjoint-set data structure (Lecture 20).
• Running time = O(|E| log |V|).

Best to date:
• Karger, Klein, and Tarjan [1993].
• Randomized algorithm.
• O(|V| + |E|) expected time.

