
CS 5633 Analysis of Algorithms 12/23/04

CS 5633 -- Spring 2004

Dynamic Tables
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/23/04

How large should a hash
table be?

Problem: What if we don’t know the proper size
in advance?

Goal: Make the table as small as possible, but
large enough so that it won’t overflow (or
otherwise become inefficient).

IDEA: Whenever the table overflows, “grow” it
by allocating (via malloc or new) a new, larger
table. Move all items from the old table into the
new one, and free the storage for the old table.

Solution: Dynamic tables.

CS 5633 Analysis of Algorithms 32/23/04

Example of a dynamic table

1. INSERT 1

2. INSERT overflow

CS 5633 Analysis of Algorithms 42/23/04

11

Example of a dynamic table

1. INSERT
2. INSERT overflow

CS 5633 Analysis of Algorithms 52/23/04

11
2

Example of a dynamic table

1. INSERT
2. INSERT

CS 5633 Analysis of Algorithms 62/23/04

Example of a dynamic table

1. INSERT
2. INSERT

11

22

3. INSERT overflow

CS 5633 Analysis of Algorithms 72/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

overflow

CS 5633 Analysis of Algorithms 82/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT

2
1

CS 5633 Analysis of Algorithms 92/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT 4

3
2
1

CS 5633 Analysis of Algorithms 102/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 112/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

overflow

CS 5633 Analysis of Algorithms 122/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT
5. INSERT

4
3
2
1

CS 5633 Analysis of Algorithms 132/23/04

Example of a dynamic table

1. INSERT
2. INSERT
3. INSERT
4. INSERT

6. INSERT 6
5. INSERT 5

4
3
2
1

77. INSERT

CS 5633 Analysis of Algorithms 142/23/04

Worst-case analysis

Consider a sequence of n insertions. The
worst-case time to execute one insertion is
Θ(n). Therefore, the worst-case time for n
insertions is n ·Θ(n) = Θ(n2).

WRONG! In fact, the worst-case cost for
n insertions is only Θ(n) ≪ Θ(n2).

Let’s see why.

CS 5633 Analysis of Algorithms 152/23/04

Tighter analysis

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

CS 5633 Analysis of Algorithms 162/23/04

Tighter analysis

Let ci = the cost of the i th insertion

= i if i – 1 is an exact power of 2,
1 otherwise.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

1 1 1 1 1 1 1 1 1 1
1 2 4 8

ci

CS 5633 Analysis of Algorithms 172/23/04

Tighter analysis (continued)

)(
3

2

)1lg(

0

1

n
n

n

c

n

j

j

n

i
i

Θ=
≤

+≤

=

∑

∑
−

=

=
Cost of n insertions

.

Thus, the average cost of each dynamic-table
operation is Θ(n)/n = Θ(1).

CS 5633 Analysis of Algorithms 182/23/04

Amortized analysis
An amortized analysis is any strategy for
analyzing a sequence of operations to
show that the average cost per operation is
small, even though a single operation
within the sequence might be expensive.

Even though we’re taking averages, however,
probability is not involved!
• An amortized analysis guarantees the

average performance of each operation in
the worst case.

CS 5633 Analysis of Algorithms 192/23/04

Types of amortized analyses
Three common amortization arguments:
• the aggregate method,
• the accounting method,
• the potential method.
We’ve just seen an aggregate analysis.
The aggregate method, though simple, lacks the
precision of the other two methods. In particular,
the accounting and potential methods allow a
specific amortized cost to be allocated to each
operation.

Won’t cover in class

CS 5633 Analysis of Algorithms 202/23/04

Accounting method
• Charge i th operation a fictitious amortized cost
ĉi, where $1 pays for 1 unit of work (i.e., time).

• This fee is consumed to perform the operation.
• Any amount not immediately consumed is stored

in the bank for use by subsequent operations.
• The bank balance must not go negative! We

must ensure that

∑∑
==

≤
n

i
i

n

i
i cc

11
ˆ

for all n.
• Thus, the total amortized costs provide an upper

bound on the total true costs.

CS 5633 Analysis of Algorithms 212/23/04

$0$0 $0$0 $0$0 $0$0 $2$2 $2$2

Example:
$2 $2

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

CS 5633 Analysis of Algorithms 222/23/04

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

overflow

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0

CS 5633 Analysis of Algorithms 232/23/04

Example:

Accounting analysis of
dynamic tables

Charge an amortized cost of ĉi = $3 for the i th
insertion.
• $1 pays for the immediate insertion.
• $2 is stored for later table doubling.
When the table doubles, $1 pays to move a
recent item, and $1 pays to move an old item.

$0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $0$0 $2 $2 $2

CS 5633 Analysis of Algorithms 242/23/04

Accounting analysis
(continued)

Key invariant: Bank balance never drops below 0.
Thus, the sum of the amortized costs provides an
upper bound on the sum of the true costs.

i 1 2 3 4 5 6 7 8 9 10
sizei 1 2 4 4 8 8 8 8 16 16

ci 1 2 3 1 5 1 1 1 9 1
ĉi 2 3 3 3 3 3 3 3 3 3

banki 1 2 2 4 2 4 6 8 2 4
*

*Okay, so I lied. The first operation costs only $2, not $3.

CS 5633 Analysis of Algorithms 252/23/04

Conclusions
• Amortized costs can provide a clean abstraction

of data-structure performance.
• Any of the analysis methods can be used when

an amortized analysis is called for, but each
method has some situations where it is arguably
the simplest.

• Different schemes may work for assigning
amortized costs in the accounting method,
sometimes yielding radically different bounds.

