CS 5633 -- Spring 2004

Computational Geometry
 Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

Fundamental objects:
point
Basic structures:

Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

Fundamental objects:
point
Basic structures:

triangulation

convex hull

Orthogonal range searching

Input: n points in d dimensions

- E.g., representing a database of n records each with d numeric fields

Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box:
- Are there any points?
- How many are there?
- List the points.

Orthogonal range searching

Input: n points in d dimensions
Query: Axis-aligned box (in 2D, a rectangle)

- Report on the points inside the box

Goal: Preprocess points into a data structure to support fast queries

- Primary goal: Static data structure
- In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
- Solve query by binary search on endpoints.
- Obtain a static structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.

Goal: Obtain a dynamic structure that can list k answers in a query in $\mathrm{O}(k+\log n)$ time.

1D range searching

In 1 D , the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
- New organization principle: Store points in the leaves of the tree.
- Internal nodes store copies of the leaves to satisfy binary search property:
- Node x stores in $k e y[x]$ the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range tree

$k e y[x]$ is the maximum key of any leaf in the left subtree of x.

Example of a 1D range query

ALGORITHMS
General 1D range query

Find the split node

1D-RANGE-QUERY $\left(T,\left[x_{1}, x_{2}\right]\right)$
$w \leftarrow \operatorname{root}[T]$
while w is not a leaf and $\left(x_{2} \leq k e y[w]\right.$ or $\left.k e y[w]<x_{1}\right)$ do if $x_{2} \leq k e y[w]$
then $w \leftarrow \operatorname{left}[w]$
else $w \leftarrow \operatorname{right}[w]$
$/ / w$ is now the split node
[traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse
left and right from split node
1D-RANGE-QUERY $\left(T,\left[x_{1}, x_{2}\right]\right)$
[find the split node]
$/ / w$ is now the split node
if w is a leaf
then output the leaf w if $x_{1} \leq k e y[w] \leq x_{2}$
else $v \leftarrow l e f t[w]$
// Left traversal
while v is not a leaf
do if $x_{1} \leq k e y[v]$
then output the subtree rooted at $\operatorname{right}[v]$ $v \leftarrow \operatorname{left}[v]$
else $v \leftarrow \operatorname{right}[v]$
output the leaf v if $x_{1} \leq k e y[v] \leq x_{2}$ [symmetrically for right traversal]

Analysis of 1D-Range-Query

Query time: Answer to range query represented by $\mathrm{O}(\log n)$ subtrees found in $\mathrm{O}(\log n)$ time.
Thus:

- Can test for points in interval in $\mathrm{O}(\log n)$ time.
- Can report the first k points in interval in $\mathrm{O}(\mathrm{k}+\log n)$ time.
- Can count points in interval in O(log n) time (exercise)

Space: O(n)

Preprocessing time: $\mathrm{O}(n \log n)$

2D range trees

Store a primary 1D range tree for all the points based on x-coordinate.
Thus in $\mathrm{O}(\log n)$ time we can find $\mathrm{O}(\log n)$ subtrees representing the points with proper x-coordinate. How to restrict to points with proper y-coordinate?

2D range trees

Idea: In primary 1D range tree of x-coordinate, every node stores a secondary 1D range tree based on y-coordinate for all points in the subtree of the node. Recursively search within each.

Analysis of 2D range trees

Query time: In $\mathrm{O}\left(\log ^{2} \mathrm{n}\right)=\mathrm{O}\left((\log n)^{2}\right)$ time, we can represent answer to range query by $\mathrm{O}\left(\log ^{2} n\right)$ subtrees.
Total cost for reporting k points: $\mathrm{O}\left(k+(\log n)^{2}\right)$.
Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $\mathrm{O}(n \log n)$.

Preprocessing time: $\mathrm{O}(n \log n)$

d-dimensional range trees

Each node of the secondary y-structure stores a tertiary z-structure representing the points in the subtree rooted at the node, etc.
Query time: $\mathrm{O}\left(k+\log ^{d} n\right)$ to report k points.
Space: O($n \log ^{d-1} n$)
Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$
Best data structure to date:
Query time: $\mathrm{O}\left(k+\log ^{d-1} n\right)$ to report k points.
Space: O $\left(n(\log n / \log \log n)^{d-1}\right)$ Preprocessing time: $\mathrm{O}\left(n \log ^{d-1} n\right)$

Primitive operations: Crossproduct

Given two vectors $v_{1}=\left(x_{1}, y_{1}\right)$ and $v_{2}=\left(x_{2}, y_{2}\right)$, is their counterclockwise angle θ

- convex ($<180^{\circ}$),
- reflex ($>180^{\circ}$), or
- borderline (0 or 180°)? convex

reflex

Crossproduct $v_{1} \times v_{2}=x_{1} y_{2}-y_{1} x_{2}$

$$
=\left|v_{1}\right|\left|v_{2}\right| \sin \theta .
$$

Thus, $\operatorname{sign}\left(v_{1} \times v_{2}\right)=\operatorname{sign}(\sin \theta)>0$ if θ convex, <0 if θ reflex,
$=0$ if θ borderline .

Primitive operations: Orientation test

Given three points p_{1}, p_{2}, p_{3} are they

- in clockwise (cw) order,
- in counterclockwise (ccw) order, or
- collinear?
$\left(p_{2}-p_{1}\right) \times\left(p_{3}-p_{1}\right)$
>0 if ccw
<0 if cw
$=0$ if collinear

ALGORITHMS
 \therefore
 Primitive operations: Sidedness test

Given three points p_{1}, p_{2}, p_{3} are they

- in clockwise (cw) order,
- in counterclockwise (ccw) order, or
- collinear?

Let L be the oriented line from p_{1} to p_{2}.
 collinear Equivalently, is the point p_{3}

- right of L,
- left of L, or
- on L?

Line-segment intersection

Given n line segments, does any pair intersect?
Obvious algorithm: $\mathrm{O}\left(n^{2}\right)$.

Sweep-line algorithm

- Sweep a vertical line from left to right (conceptually replacing x-coordinate with time).
- Maintain dynamic set S of segments that intersect the sweep line, ordered
sweep-line status by y-coordinate of intersection.
- Order changes when
- new segment is encountered, \} segment
- existing segment finishes, or $\}$ endpoints
- two segments cross
- Key event points are therefore segment endpoints.

Sweep-line algorithm

Process event points in order by sorting segment endpoints by x-coordinate and looping through:

- For a left endpoint of segment s :
- Add segment s to dynamic set S.
- Check for intersection between s and its neighbors in S.
- For a right endpoint of segment s :
- Remove segment s from dynamic set S.
- Check for intersection between the neighbors of s in S.

Analysis

Use balanced search tree to store dynamic set S.

Sweep-line algorithm

$\mathrm{O}(n)$ Process event points in order by sorting segment endpoints by x-coordinate and looping through:
$\int \cdot$ For a left endpoint of segment s :
$\mathrm{O}(\log n) \quad$ - Add segment s to dynamic set S.

- Check for intersection between s and its neighbors in S.
- For a right endpoint of segment s:
$\mathrm{O}(\log n) \quad$ - Remove segment s from dynamic set S.
- Check for intersection between the neighbors of s in S.

Analysis

Use balanced search tree to store dynamic set S. Total running time: $\mathrm{O}(n \log n)$.

Note that the algorithm stops after finding the first intersection point. If we want to report all intersection points, the algorithm can be extended to run in $\mathrm{O}((n+k) \log n)$ time, where k is the number of intersections.

Correctness

Theorem: If there is an intersection, the algorithm finds it.
Proof: Let X be the leftmost intersection point. Assume for simplicity that

- only two segments s_{1}, s_{2} pass through X, and
- no two points have the same x-coordinate.

At some point before we reach X,
s_{1} and s_{2} become consecutive in the order of S.
Either initially consecutive when s_{1} or s_{2} inserted, or became consecutive when another deleted.

