

CS 5633 -- Spring 2004

Computational Geometry

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Computational geometry

Algorithms for solving "geometric problems" in 2D and higher.

point

Fundamental objects:

Basic structures:

line segment

CS 5633 Analysis of Algorithms

line

Orthogonal range searching

Input: *n* points in *d* dimensions

• E.g., representing a database of *n* records each with *d* numeric fields

Query: Axis-aligned *box* (in 2D, a rectangle)

- Report on the points inside the box:
 - Are there any points?
 - How many are there?
 - List the points.

Orthogonal range searching

Input: *n* points in *d* dimensions

- Query: Axis-aligned *box* (in 2D, a rectangle)
 - Report on the points inside the box
- **Goal:** Preprocess points into a data structure to support fast queries
 - Primary goal: *Static data structure*
 - In 1D, we will also obtain a dynamic data structure supporting insert and delete

1D range searching

In 1D, the query is an interval:

First solution:

- Sort the points and store them in an array
 - Solve query by binary search on endpoints.
 - Obtain a static structure that can list
 k answers in a query in O(*k* + log *n*) time.

Goal: Obtain a dynamic structure that can list *k* answers in a query in $O(k + \log n)$ time.

1D range searching

In 1D, the query is an interval:

New solution that extends to higher dimensions:

- Balanced binary search tree
 - New organization principle: Store points in the *leaves* of the tree.
 - Internal nodes store copies of the leaves to satisfy binary search property:
 - Node *x* stores in *key*[*x*] the maximum key of any leaf in the left subtree of *x*.

7

key[x] is the maximum key of any leaf in the left subtree of x.

key[x] is the maximum key of any leaf in the left subtree of x.

Pseudocode, part 1: Find the split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) $w \leftarrow \operatorname{root}[T]$ while w is not a leaf and $(x_2 \le key[w] \text{ or } key[w] < x_1)$ do if $x_2 \leq key[w]$ then $w \leftarrow left[w]$ else $w \leftarrow right[w]$ // w is now the split node [traverse left and right from w and report relevant subtrees]

Pseudocode, part 2: Traverse left and right from split node

1D-RANGE-QUERY(T, $[x_1, x_2]$) [find the split node] // w is now the split node if w is a leaf **then** output the leaf w if $x_1 \le key[w] \le x_2$ // Left traversal else $v \leftarrow left[w]$ while v is not a leaf do if $x_1 \leq key[v]$ then output the subtree rooted at *right*[v] $v \leftarrow left[v]$ else $v \leftarrow right[v]$ output the leaf v if $x_1 \leq key[v] \leq x_2$ [symmetrically for right traversal]

Analysis of 1D-RANGE-QUERY

Query time: Answer to range query represented by $O(\log n)$ subtrees found in $O(\log n)$ time. Thus:

- Can test for points in interval in O(log *n*) time.
- Can report the first k points in interval in O(k + log n) time.
- Can count points in interval in O(log n) time (exercise)
- Space: O(n)
 Preprocessing time: O(n log n)

2D range trees

2D range trees

Store a *primary* 1D range tree for all the points based on *x*-coordinate.

Thus in $O(\log n)$ time we can find $O(\log n)$ subtrees representing the points with proper *x*-coordinate. How to restrict to points with proper *y*-coordinate?

2D range trees

Idea: In primary 1D range tree of *x*-coordinate, every node stores a *secondary* 1D range tree based on *y*-coordinate for all points in the subtree of the node. Recursively search within each.

17

Analysis of 2D range trees

Query time: In $O(\log^2 n) = O((\log n)^2)$ time, we can represent answer to range query by $O(\log^2 n)$ subtrees. Total cost for reporting *k* points: $O(k + (\log n)^2)$.

Space: The secondary trees at each level of the primary tree together store a copy of the points. Also, each point is present in each secondary tree along the path from the leaf to the root. Either way, we obtain that the space is $O(n \log n)$.

Preprocessing time: O(n log n)

d-dimensional range trees

Each node of the secondary *y*-structure stores a tertiary *z*-structure representing the points in the subtree rooted at the node, etc.

Query time: $O(k + \log^d n)$ to report k points. Space: $O(n \log^{d-1} n)$ Preprocessing time: $O(n \log^{d-1} n)$

Best data structure to date: Query time: $O(k + \log^{d-1} n)$ to report k points. Space: $O(n (\log n / \log \log n)^{d-1})$ Preprocessing time: $O(n \log^{d-1} n)$

Primitive operations: Crossproduct

Given two vectors $v_1 = (x_1, y_1)$ and $v_2 = (x_2, y_2)$, is their counterclockwise angle θ

- *convex* (< 180°),
- *reflex* (> 180°), or
- borderline (0 or 180°)? convex

Crossproduct $v_1 \times v_2 = x_1 y_2 - y_1 x_2$ = $|v_1| |v_2| \sin \theta$. Thus, $\operatorname{sign}(v_1 \times v_2) = \operatorname{sign}(\sin \theta) > 0$ if θ convex, < 0 if θ reflex, = 0 if θ borderline.

Primitive operations: Orientation test

Given three points p_1, p_2, p_3 are they

- in clockwise (cw) order,
- in counterclockwise (ccw) order, or
- collinear?

$$(p_2 - p_1) \times (p_3 - p_1)$$

> 0 if ccw
< 0 if cw
= 0 if collinear

 p_3

 p_2

collinear

Primitive operations: Sidedness test

Given three points p_1, p_2, p_3 are they

- in *clockwise (cw) order*,
- in counterclockwise (ccw) order, or
- collinear?

Let *L* be the oriented line from p_1 to p_2 . Equivalently, is the point p_3

- *right* of *L*,
- *left* of *L*, or
- *on L*?

CS 5633 Analysis of Algorithms

 p_{z}

 p_3

 p_3

 p_2

collinear

CCW

Line-segment intersection

Given *n* line segments, does any pair intersect? Obvious algorithm: $O(n^2)$.

Sweep-line algorithm

- Sweep a vertical line from left to right (conceptually replacing *x*-coordinate with time).
- Maintain dynamic set *S* of segments that intersect the sweep line, ordered by *y*-coordinate of intersection.
- Order changes when
 - new segment is encountered, ∖
 - existing segment finishes, or \int endpoints
 - two segments cross

• Key *event points* are therefore segment endpoints.

sweep-line

segment

Sweep-line algorithm

Process event points in order by sorting segment endpoints by *x*-coordinate and looping through:

- For a left endpoint of segment *s*:
 - Add segment *s* to dynamic set *S*.
 - Check for intersection between *s* and its neighbors in *S*.
- For a right endpoint of segment s:
 - Remove segment s from dynamic set S.
 - Check for intersection between the neighbors of *s* in *S*.

Use balanced search tree to store dynamic set S.

Sweep-line algorithm

Process event points in order by sorting segment O(n)endpoints by *x*-coordinate and looping through: • For a left endpoint of segment s: • Add segment *s* to dynamic set *S*. $O(\log n)$ • Check for intersection between *s* and its neighbors in S. • For a right endpoint of segment s: • Remove segment *s* from dynamic set *S*. $O(\log n)$ • Check for intersection between the neighbors of s in S.

Use balanced search tree to store dynamic set *S*. Total running time: $O(n \log n)$.

Note that the algorithm stops after finding the first intersection point. If we want to report all intersection points, the algorithm can be extended to run in $O((n+k) \log n)$ time, where *k* is the number of intersections.

Correctness

Theorem: If there is an intersection, the algorithm finds it. *Proof:* Let *X* be the leftmost intersection point. Assume for simplicity that

- only two segments s_1 , s_2 pass through X, and
- no two points have the same *x*-coordinate. At some point before we reach *X*,

 s_1 and s_2 become consecutive in the order of S. Either initially consecutive when s_1 or s_2 inserted, or became consecutive when another deleted.