
CS 5633 Analysis of Algorithms 12/16/04

CS 5633 -- Spring 2004

Hashing
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

CS 5633 Analysis of Algorithms 22/16/04

Symbol-table problem

Symbol table T holding n records:

key[x]key[x]
record

x

Other fields
containing
satellite data

Operations on T:
• INSERT(T, x)
• DELETE(T, x)
• SEARCH(T, k)

How should the data structure T be organized?

CS 5633 Analysis of Algorithms 32/16/04

Direct-access table

IDEA: Suppose that the set of keys is K ⊆ {0,
1, …, m–1}, and keys are distinct. Set up an
array T[0 . . m–1]:

T[k] = x if key[x] = k ∈ K ,
NIL otherwise.

Then, operations take Θ(1) time.
Problem: The range of keys can be large:
• 64-bit numbers (which represent

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).

CS 5633 Analysis of Algorithms 42/16/04

As each key is inserted, h maps it to a slot of T.

Hash functions
Solution: Use a hash function h to map the
universe U of all keys into
{0, 1, …, m–1}:

U

K
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already
occupied slot in T, a collision occurs.

T

= h(k5)

CS 5633 Analysis of Algorithms 52/16/04

Resolving collisions by
chaining

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

4949 8686 5252i

CS 5633 Analysis of Algorithms 62/16/04

Analysis of chaining
We make the assumption of simple uniform
hashing:
• Each key k ∈ K of keys is equally likely to

be hashed to any slot of table T, independent
of where other keys are hashed.

Let n be the number of keys in the table, and
let m be the number of slots.
Define the load factor of T to be

α = n/m
= average number of keys per slot.

CS 5633 Analysis of Algorithms 72/16/04

Search cost

Expected time to search for a record with
a given key = Θ(1 + α).

apply hash
function and
access slot

search
the list

Expected search time = Θ(1) if α = O(1),
or equivalently, if n = O(m).

CS 5633 Analysis of Algorithms 82/16/04

Choosing a hash function

The assumption of simple uniform hashing
is hard to guarantee, but several common
techniques tend to work well in practice as
long as their deficiencies can be avoided.

Desirata:
• A good hash function should distribute the

keys uniformly into the slots of the table.
• Regularity in the key distribution should

not affect this uniformity.

CS 5633 Analysis of Algorithms 92/16/04

h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m = 2r, then the hash
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then

h(k) = 0110102 .

Deficiency: Don’t pick an m that has a small
divisor d. A preponderance of keys that are
congruent modulo d can adversely affect
uniformity.

CS 5633 Analysis of Algorithms 102/16/04

Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power
of 2 or 10 and not otherwise used prominently
in the computing environment.
Annoyance:
• Sometimes, making the table size a prime is

inconvenient.
But, this method is popular, although the next
method we’ll see is usually superior.

CS 5633 Analysis of Algorithms 112/16/04

Dot-product method
Randomized strategy:
Let m be prime. Decompose key k into r + 1
digits, each with value in the set {0, 1, …, m–1}.
That is, let k = 〈k0, k1, …, km–1〉, where 0 ≤ ki < m.
Pick a = 〈a0, a1, …, am–1〉 where each ai is chosen
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

• Excellent in practice, but expensive to compute.

CS 5633 Analysis of Algorithms 122/16/04

Resolving collisions by open
addressing

No storage is used outside of the hash table itself.
• Insertion systematically probes the table until an

empty slot is found.
• The hash function depends on both the key and

probe number:
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}.

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉
should be a permutation of {0, 1, …, m–1}.

• The table may fill up, and deletion is difficult (but
not impossible).

CS 5633 Analysis of Algorithms 132/16/04

204204

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

481

T
0

m–1

collision

CS 5633 Analysis of Algorithms 142/16/04

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1) collision586

CS 5633 Analysis of Algorithms 152/16/04

Example of open addressing

Insert key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

insertion496

2. Probe h(496,2)

CS 5633 Analysis of Algorithms 162/16/04

Example of open addressing

Search for key k = 496:

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

496

2. Probe h(496,2)

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.

CS 5633 Analysis of Algorithms 172/16/04

Probing strategies

Linear probing:
Given an ordinary hash function h′(k), linear
probing uses the hash function

h(k,i) = (h′(k) + i) mod m.
This method, though simple, suffers from primary
clustering, where long runs of occupied slots build
up, increasing the average search time. Moreover,
the long runs of occupied slots tend to get longer.

CS 5633 Analysis of Algorithms 182/16/04

Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k),
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅h2(k)) mod m.
This method generally produces excellent results,
but h2(k) must be relatively prime to m. One way
is to make m a power of 2 and design h2(k) to
produce only odd numbers.

CS 5633 Analysis of Algorithms 192/16/04

Analysis of open addressing

We make the assumption of uniform hashing:
• Each key is equally likely to have any one of

the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash
table with load factor α = n/m < 1, the
expected number of probes in an unsuccessful
search is at most 1/(1–α).

CS 5633 Analysis of Algorithms 202/16/04

Proof of the theorem
Proof.
• At least one probe is always necessary.
• With probability n/m, the first probe hits an

occupied slot, and a second probe is necessary.
• With probability (n–1)/(m–1), the second probe

hits an occupied slot, and a third probe is
necessary.

• With probability (n–2)/(m–2), the third probe
hits an occupied slot, etc.

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n.

CS 5633 Analysis of Algorithms 212/16/04

Proof (continued)

Therefore, the expected number of probes is

+−
+

−
−+

−
−++ LL

1
11

2
21

1
111

nmm
n

m
n

m
n

()()()()

α

α

ααα
αααα

−
=

=

++++≤
++++≤

∑
∞

=

1
1

1
1111

0

32

i

i

L

LL

.

The textbook has a
more rigorous proof.

CS 5633 Analysis of Algorithms 222/16/04

Implications of the theorem

• If α is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected
number of probes is 1/(1–0.9) = 10.

