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Symbol-table problem

Symbol table T holding n records:

key[x]key[x]
record

x

Other fields 
containing 
satellite data

Operations on T:
• INSERT(T, x)
• DELETE(T, x)
• SEARCH(T, k)

How should the data structure T be organized?
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Direct-access table

IDEA: Suppose that the set of keys is K ⊆ {0, 
1, …, m–1}, and keys are distinct.  Set up an 
array T[0 . . m–1]: 

T[k] = x if key[x] = k ∈ K ,
NIL otherwise.

Then, operations take Θ(1) time.
Problem: The range of keys can be large:
• 64-bit numbers (which represent 

18,446,744,073,709,551,616 different keys),
• character strings (even larger!).
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As each key is inserted, h maps it to a slot of T.

Hash functions
Solution: Use a hash function h to map the 
universe U of all keys into
{0, 1, …, m–1}:

U

K
k1

k2 k3

k4

k5

0

m–1

h(k1)
h(k4)

h(k2)

h(k3)

When a record to be inserted maps to an already 
occupied slot in T, a collision occurs.

T

= h(k5)
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Resolving collisions by 
chaining

• Records in the same slot are linked into a list.

h(49) = h(86) = h(52) = i

T

4949 8686 5252i
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Analysis of chaining
We make the assumption of simple uniform 
hashing:
• Each key k ∈ K of keys is equally likely to 

be hashed to any slot of table T, independent 
of where other keys are hashed.

Let n be the number of keys in the table, and 
let m be the number of slots.
Define the load factor of T to be

α = n/m
= average number of keys per slot.
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Search cost

Expected time to search for a record with 
a given key = Θ(1 + α).

apply hash 
function and 
access slot

search 
the list

Expected search time = Θ(1) if α = O(1), 
or equivalently, if n = O(m).
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Choosing a hash function

The assumption of simple uniform hashing 
is hard to guarantee, but several common 
techniques tend to work well in practice as 
long as their deficiencies can be avoided.

Desirata:
• A good hash function should distribute the 

keys uniformly into the slots of the table.
• Regularity in the key distribution should 

not affect this uniformity.
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h(k)

Division method
Assume all keys are integers, and define

h(k) = k mod m.

Extreme deficiency: If m = 2r, then the hash 
doesn’t even depend on all the bits of k:
• If k = 10110001110110102 and r = 6, then 

h(k) = 0110102 .

Deficiency:  Don’t pick an m that has a small 
divisor d.  A preponderance of keys that are 
congruent modulo d can adversely affect 
uniformity. 
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Division method (continued)

h(k) = k mod m.

Pick m to be a prime not too close to a power 
of 2 or 10 and not otherwise used prominently 
in the computing environment.
Annoyance:
• Sometimes, making the table size a prime is 

inconvenient.
But, this method is popular, although the next 
method we’ll see is usually superior.
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Dot-product method
Randomized strategy:
Let m be prime.  Decompose key k into r + 1
digits, each with value in the set {0, 1, …, m–1}. 
That is, let k = 〈k0, k1, …, km–1〉, where 0 ≤ ki < m.
Pick a = 〈a0, a1, …, am–1〉 where each ai is chosen 
randomly from {0, 1, …, m–1}.

mkakh
r

i
iia mod)(

0
∑
=

=Define .

• Excellent in practice, but expensive to compute.



CS 5633 Analysis of Algorithms 122/16/04

Resolving collisions by open 
addressing

No storage is used outside of the hash table itself.
• Insertion systematically probes the table until an 

empty slot is found.
• The hash function depends on both the key and 

probe number:
h : U × {0, 1, …, m–1} → {0, 1, …, m–1}.

• The probe sequence 〈h(k,0), h(k,1), …, h(k,m–1)〉
should be a permutation of {0, 1, …, m–1}.

• The table may fill up, and deletion is difficult (but 
not impossible).
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204204

Example of open addressing

Insert key k = 496: 

0. Probe h(496,0)
586
133

481

T
0

m–1

collision
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Example of open addressing

Insert key k = 496: 

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1) collision586
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Example of open addressing

Insert key k = 496: 

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

insertion496

2. Probe h(496,2)
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Example of open addressing

Search for key k = 496: 

0. Probe h(496,0)
586
133

204

481

T
0

m–1

1. Probe h(496,1)

496

2. Probe h(496,2)

Search uses the same probe
sequence, terminating suc-
cessfully if it finds the key
and unsuccessfully if it encounters an empty slot.
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Probing strategies

Linear probing:
Given an ordinary hash function h′(k), linear 
probing uses the hash function

h(k,i) = (h′(k) + i) mod m.
This method, though simple, suffers from primary 
clustering, where long runs of occupied slots build 
up, increasing the average search time.  Moreover, 
the long runs of occupied slots tend to get longer.
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Probing strategies

Double hashing
Given two ordinary hash functions h1(k) and h2(k), 
double hashing uses the hash function

h(k,i) = (h1(k) + i⋅h2(k)) mod m.
This method generally produces excellent results, 
but h2(k) must be relatively prime to m.  One way 
is to make m a power of 2 and design h2(k) to 
produce only odd numbers.
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Analysis of open addressing

We make the assumption of uniform hashing:
• Each key is equally likely to have any one of 

the m! permutations as its probe sequence.

Theorem. Given an open-addressed hash 
table with load factor α = n/m < 1, the 
expected number of probes in an unsuccessful 
search is at most 1/(1–α).



CS 5633 Analysis of Algorithms 202/16/04

Proof of the theorem
Proof.
• At least one probe is always necessary.
• With probability n/m, the first probe hits an 

occupied slot, and a second probe is necessary.
• With probability (n–1)/(m–1), the second probe 

hits an occupied slot, and a third probe is 
necessary.

• With probability (n–2)/(m–2), the third probe 
hits an occupied slot, etc.

Observe that α=<
−
−

m
n

im
in for i = 1, 2, …, n.
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Proof (continued)

Therefore, the expected number of probes is
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The textbook has a 
more rigorous proof.
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Implications of the theorem

• If α is constant, then accessing an open-
addressed hash table takes constant time.

• If the table is half full, then the expected 
number of probes is 1/(1–0.5) = 2.

• If the table is 90% full, then the expected 
number of probes is 1/(1–0.9) = 10.


