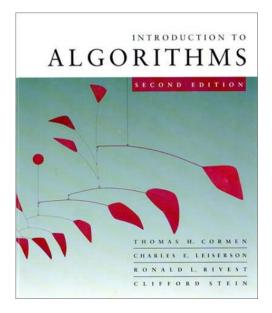


CS 5633 -- Spring 2004



Recurrences and Divide & Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

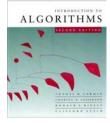
1/21/04

Merge sort

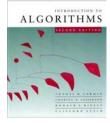
MERGE-SORT A[1 ... n]1. If n = 1, done. 2. Recursively sort $A[1 ... \lceil n/2 \rceil]$ and $A[\lceil n/2 \rceil + 1 ... n]$.

3. "*Merge*" the 2 sorted lists.

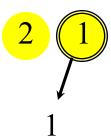
Key subroutine: MERGE

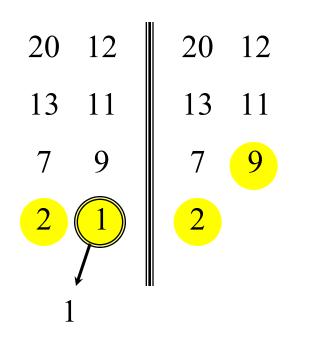


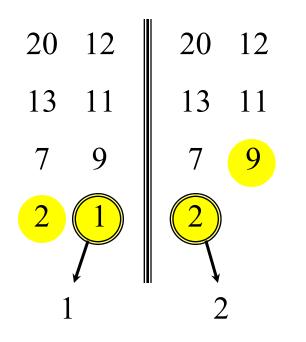
- 20 12
- 13 11
- 7 9

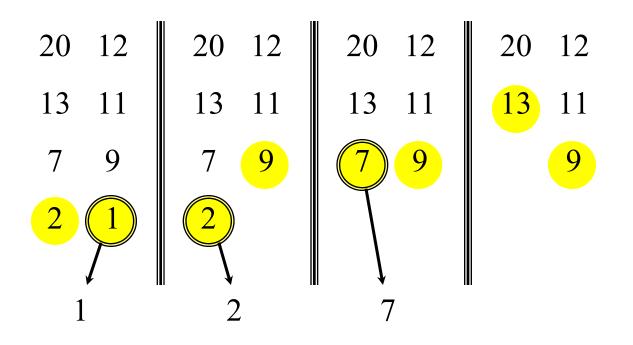


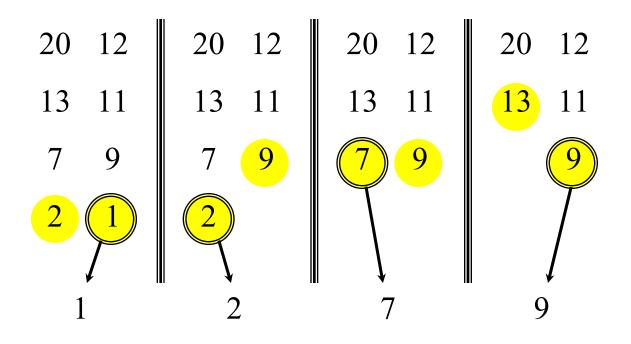
- 20 12
- 13 11
- 7 9

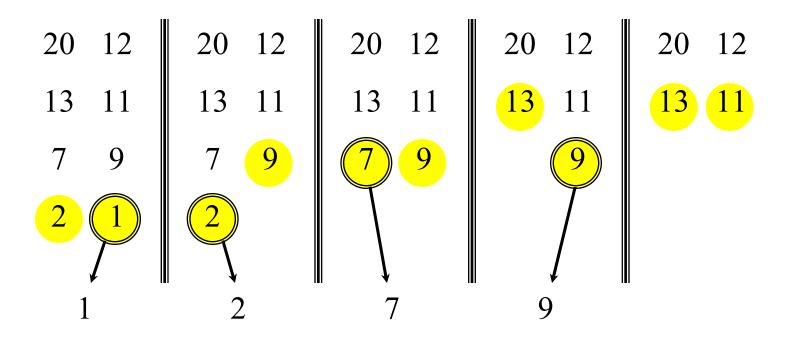


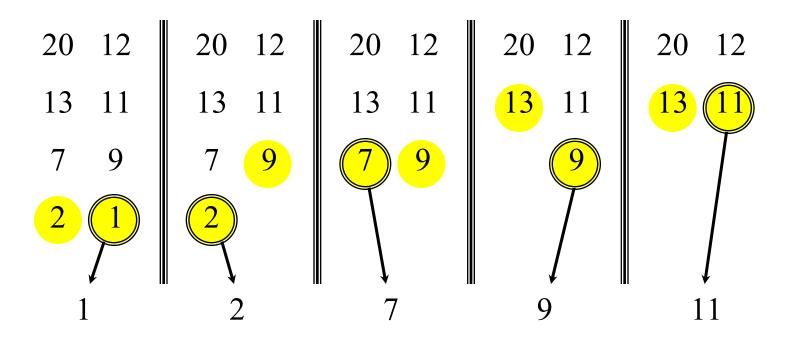


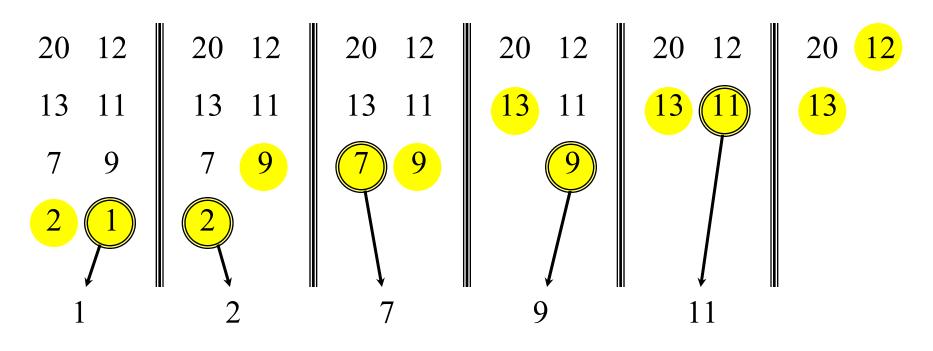


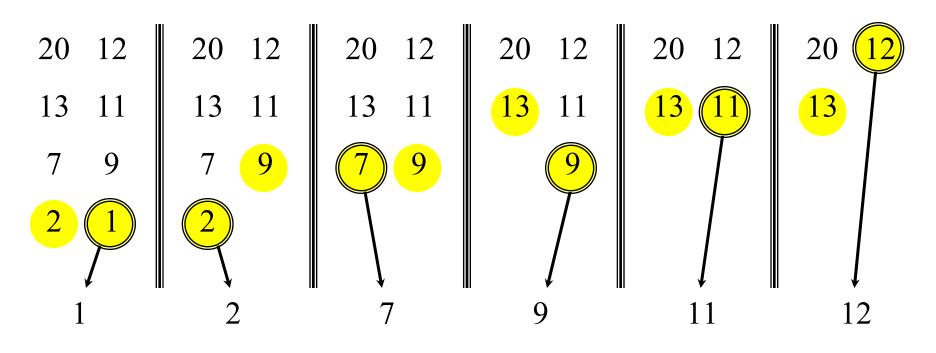


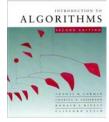


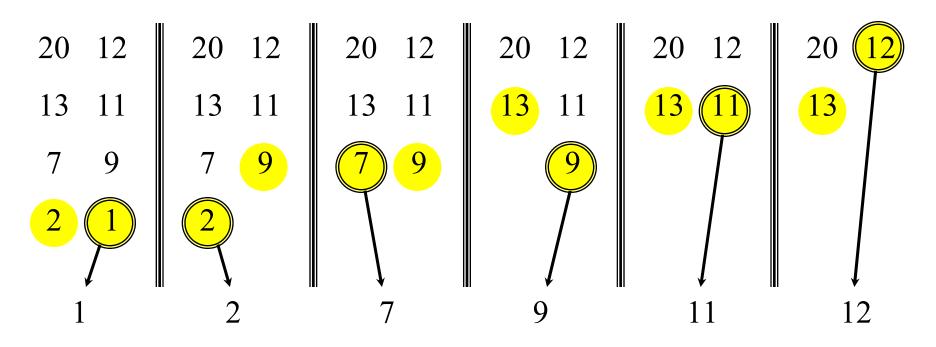












Time $dn = \Theta(n)$ to merge a total of *n* elements (linear time). CS 5633 Analysis of Algorithms

Analyzing merge sort

T(n)
 d_0
2T(n/2)MERGE-SORT $A[1 \dots n]$
1. If n = 1, done.2T(n/2)1. If n = 1, done.2T(n/2)2. Recursively sort $A[1 \dots \lceil n/2 \rceil]$
and $A[\lceil n/2 \rceil + 1 \dots n]$.dn3. "Merge" the 2 sorted lists

Sloppiness: Should be $T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$T(n) = \begin{cases} d_0 \text{ if } n = 1; \\ 2T(n/2) + dn \text{ if } n > 1. \end{cases}$$

• We shall often omit stating the base case when $T(n) = \Theta(1)$ for sufficiently small *n*, but only when it has no effect on the asymptotic solution to the recurrence.

• But what does T(n) solve to? I.e., is it O(n) or $O(n^2)$ or $O(n^3)$ or ...?

The divide-and-conquer design paradigm

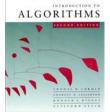
- *1. Divide* the problem (instance) into subproblems.
- 2. *Conquer* the subproblems by solving them recursively.
- 3. *Combine* subproblem solutions.

Example: merge sort

1. Divide: Trivial. 2. *Conquer:* Recursively sort 2 subarrays. 3. *Combine:* Linear-time merge. T(n) = 2T(n/n)*# subproblems*

subproblem size

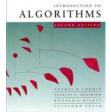
work dividing and combining



Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

 Example: Find 9

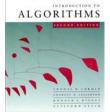
 3
 5
 7
 8
 9
 12
 15



Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

 Example: Find 9

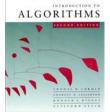
 3
 5
 7
 8
 9
 12
 15



Example: Find 9

Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

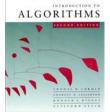
3 5 7 8 9 12 15



Example: Find 9

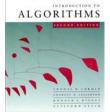
Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

3 5 7 8 9 12 15



Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial. *Example:* Find 9

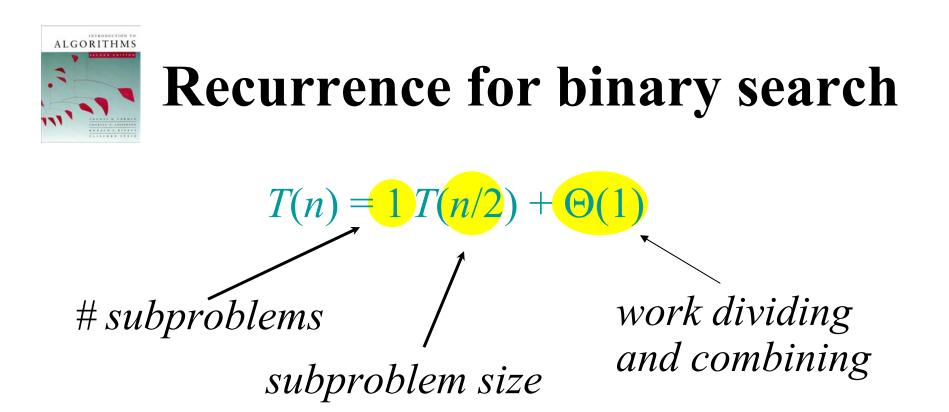
3 5 7 8 9 12 15



Example: Find 9

Find an element in a sorted array: *1. Divide:* Check middle element. *2. Conquer:* Recursively search 1 subarray. *3. Combine:* Trivial.

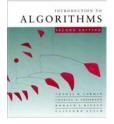
3 5 7 8 9 12 15

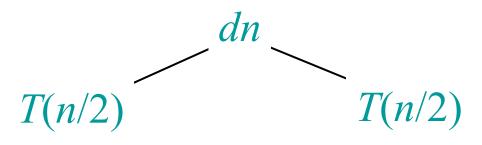


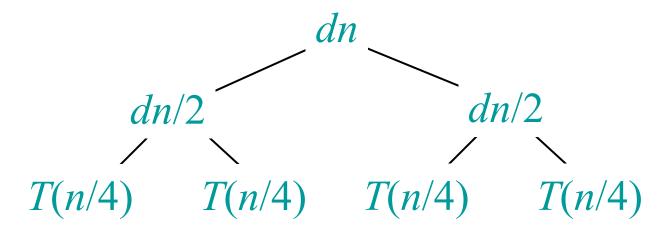
Recurrence for merge sort

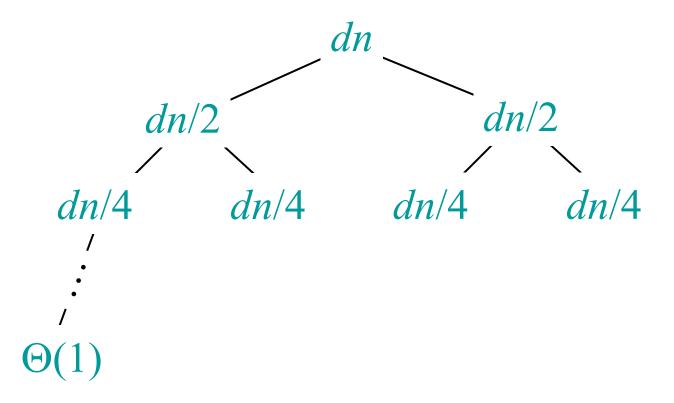
$$T(n) = \begin{cases} \Theta(1) & \text{if } n = 1; \\ 2T(n/2) + \Theta(n) & \text{if } n > 1. \end{cases}$$

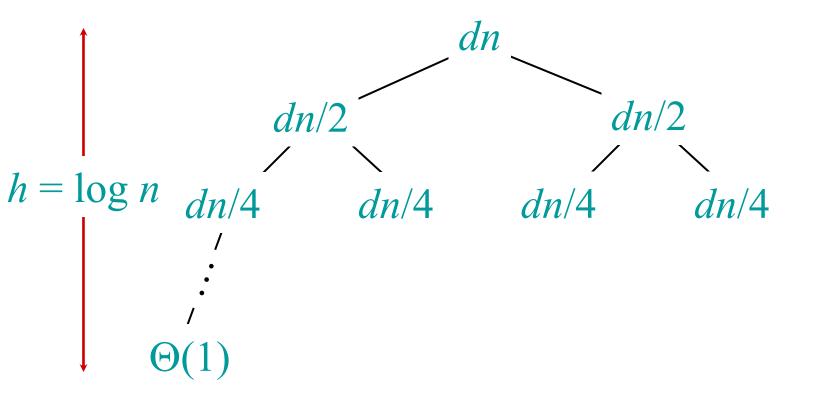
How do we solve T(n)? I.e., how do we found out if it is O(n) or O(n²) or ...?

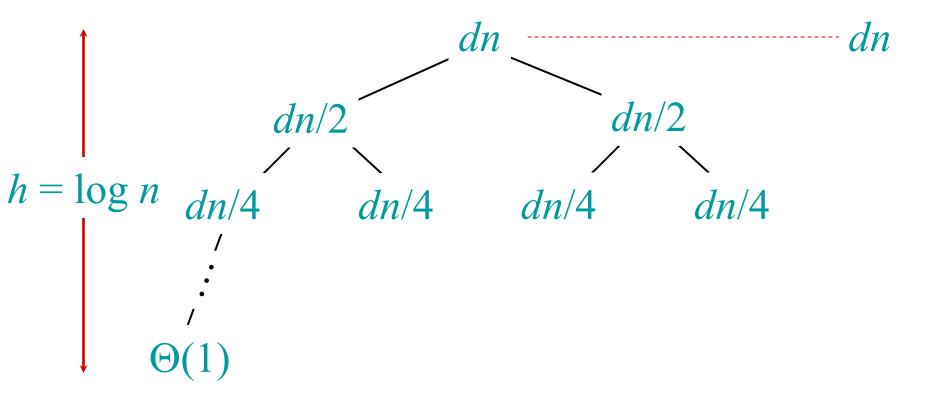


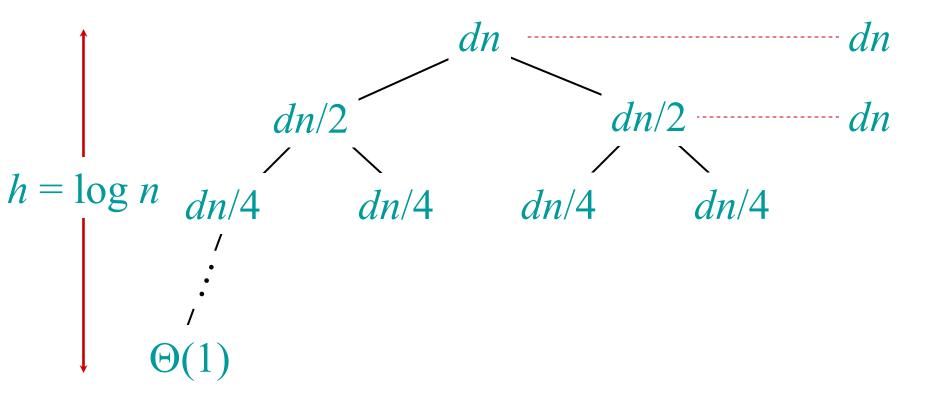


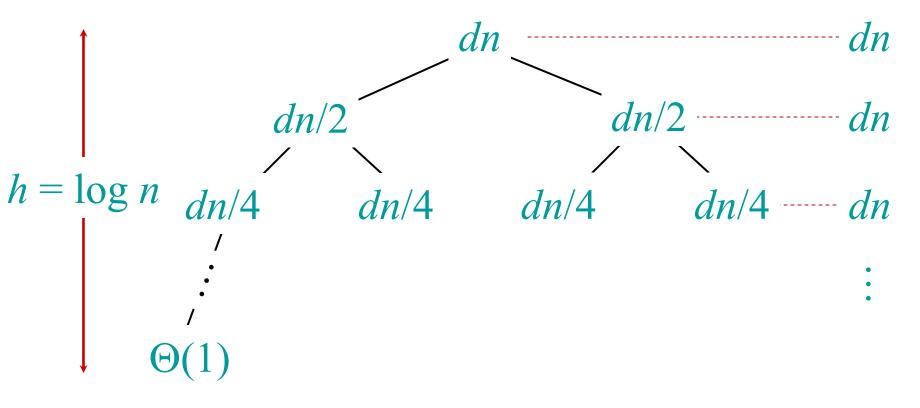






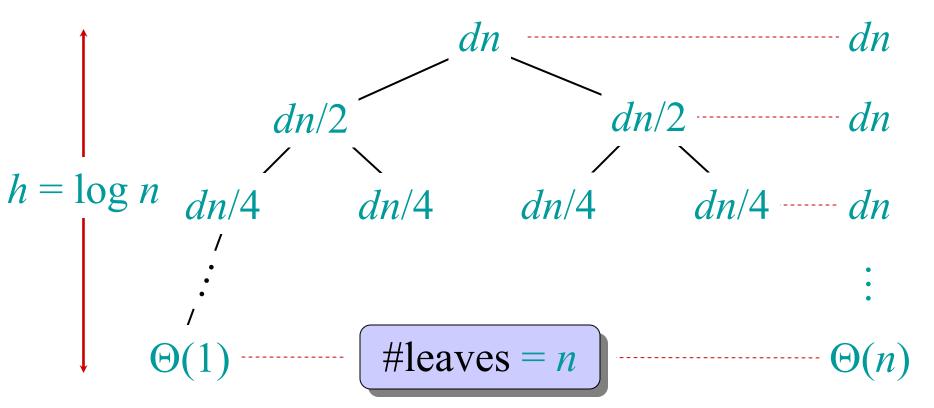


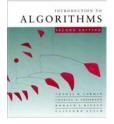




Recursion tree

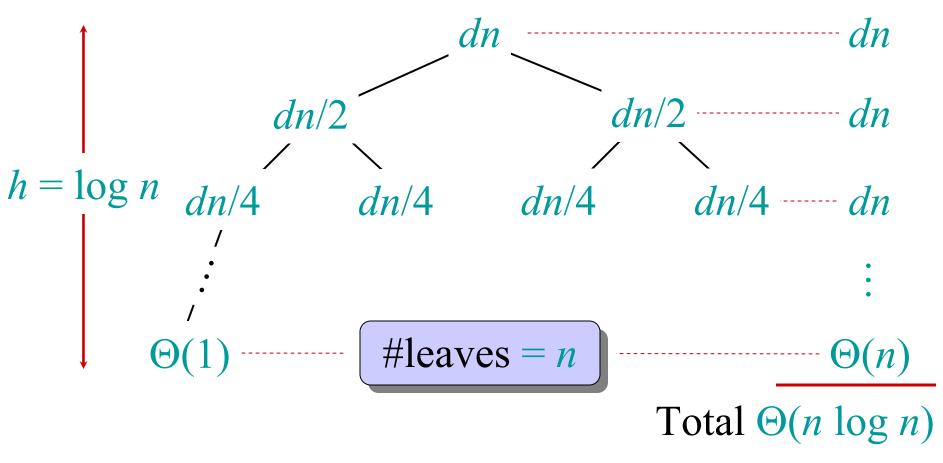
Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.





Recursion tree

Solve T(n) = 2T(n/2) + dn, where d > 0 is constant.



CS 5633 Analysis of Algorithms

Conclusions

- Merge sort runs in $\Theta(n \lg n)$ time.
- $\Theta(n \lg n)$ grows more slowly than $\Theta(n^2)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for n > 30 or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating **guesses** of what the runtime could be.

But: Need to **verify** that the guess is right. \rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove \bigcirc and \bigcirc separately):

- *Guess* the form of the solution:
 (e.g. using recursion trees, or expansion)
- *2. Verify* by induction (inductive step). *3. Solve* for constants n₀ and c (base case of induction)

The divide-and-conquer design paradigm

- *1. Divide* the problem (instance) into subproblems.
 - *a* subproblems, each of size *n/b*
- 2. *Conquer* the subproblems by solving them recursively.
- 3. Combine subproblem solutions. Runtime is f(n)



The master method

The master method applies to recurrences of the form

T(n) = a T(n/b) + f(n),where $a \ge 1, b > 1$, and f is asymptotically positive.

Three common cases

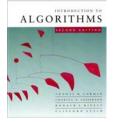
Compare f(n) with $n^{\log_b a}$:

1. $f(n) = O(n^{\log_b a - \varepsilon})$ for some constant $\varepsilon > 0$.

f(*n*) grows polynomially slower than *n*^{log_ba} (by an *n*^ε factor).

Solution: $T(n) = \Theta(n^{\log_b a})$.

2. f(n) = Θ(n^{logba} lg^kn) for some constant k ≥ 0.
f(n) and n^{logba} grow at similar rates.
Solution: T(n) = Θ(n^{logba} lg^{k+1}n).



Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the *regularity condition* that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

-

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\varepsilon})$ for $\varepsilon = 1.$
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
CASE 2: $f(n) = \Theta(n^2 \lg^0 n)$, that is, $k = 0$.
 $\therefore T(n) = \Theta(n^2 \lg n).$

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
CASE 3: $f(n) = \Omega(n^{2+\varepsilon})$ for $\varepsilon = 1$
and $4(cn/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\lg n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\lg n.$
Master method does not apply. In particular,
for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\lg n)$.



Master theorem (summary)

T(n) = a T(n/b) + f(n)

CASE 1: $f(n) = O(n^{\log_b a - \varepsilon})$ $\Rightarrow T(n) = \Theta(n^{\log_b a}).$ **CASE 2:** $f(n) = \Theta(n^{\log_b a} \log^k n)$ $\Rightarrow T(n) = \Theta(n^{\log_b a} \log^{k+1} n).$ **CASE 3:** $f(n) = \Omega(n^{\log_b a + \varepsilon})$ and $a f(n/b) \le c f(n)$

 $\Rightarrow T(n) = \Theta(f(n))$.

Merge sort: $a = 2, b = 2 \implies n^{\log_b a} = n$ $\Rightarrow CASE 2 (k = 0) \implies T(n) = \Theta(n \lg n)$.

CS 5633 Analysis of Algorithms