2/11/04

5. Homework Due 2/18/04 before class

As usual, justify all your answers.

1. Sorting algorithms (6 points)

Consider the four sorting algorithms **mergesort**, **quicksort**, **heapsort**, **counting sort**.

- a) Which of the three algorithms are *stable*?
- b) Which of the three algorithms sort *in-place*? (An algorithm sorts *in-place* if it needs only a constant amount of extra space.)
- c) Do you think that it would be possible to slightly modify the algorithms to make them work in-place or to make them stable?

2. Decision tree for merge sort (3 points)

Draw the decision tree for merge sort for inputs of length 3.

3. Leafs in decision trees (4 points)

Consider a decision tree for a comparison sort of n elements.

- a) How close to the root can a leaf be, i.e., what is the smallest possible depth (the highestmost possible layer) at which a leaf can be?
- b) How far away from the root can a leaf be, i.e., what is the largest possible depth (the lowestmost possible layer) at which a leaf can be?

4. Median computation (7 points)

Suppose arrays A and B are **both sorted** and both contain n elements. Give a randomized divide-and-conquer algorithm to find the median of $A \cup B$ in expected $O(\log n)$ time. (Describe it either in words or as pseudo-code; whatever you prefer). Argue **shortly** why the runtime is $O(\log n)$. *Hint: Take a look at randomized select.*

4. Radix (1 point)

How many digits are there when a 64-bit quantity is viewed as a radix-128 number? Describe how to extract each of the digits.

5. Ranges (7 points)

Given n integers each between 0 and k (inclusive). Give an algorithm which preprocesses the input in O(n + k) time such that the following query can be answered in O(1) time: "How many of the integers are in the range [a, b] (where a, b are query arguments)?" *Hint: Take a look at counting sort.*

6. Sort in linear time (2 points)

Given n integers in the range 0 to $n^4 - 1$. How fast can you sort them?