2/4/04

4. Homework Due 2/11/04 before class

As usual, justify all your answers, or you may lose points.

1. Randomized code snippets (6 points)

Analyze the expected runtimes of the following code snippets. Clearly define your random variable. *Hint: Define a separate random variable for each iteration* of the loop. And remember, random variables are functions.

a) (3 points)

RandomBit() takes O(1) time and returns 0 or 1 each with probability 1/2.

```
for(i=1; i<=n; i++){
    if(RandomBit()==1){
        for(j=i; j<=n; j++){
            print(''hello'');
        }
    }
}</pre>
```

b) (3 points)

RandomInteger(i) takes O(1) time and returns an integer between 1 and *i*, each with probability 1/i.

```
for(i=1; i<=n; i++){
    if(RandomInteger(i)==i){
        for(j=1; j<=i; j++){
            print(' 'hello'');
        }
    }
}</pre>
```

2. Sorting (8 points)

a) (2 point)

What is the runtime of merge sort for an array of n elements sorted in ...

- ... increasing order?
- ... decreasing order?

b) (2 point)

What is the runtime of deterministic quicksort (pivot = 1st element) for an array of n elements sorted in ...

- ... increasing order?
- ... decreasing order?

FLIP over to back page \implies

c) (1 point)

What is the expected runtime of randomized quicksort (pivot = random element) for an array of n elements sorted in ...

- ... increasing order?

- ... decreasing order?

d) (1 point)

What is the runtime of deterministic quicksort (pivot = 1st element) for an array that contains a random permutation of n numbers?

e) (2 point)

What is the runtime of heapsort (using a max-heap) for an array of n elements sorted in ...

- ... increasing order?

- ... decreasing order?

3. Minimum element (3 points)

How can you compute the minimum element in a max-heap of n elements? How much time does it take in the worst case?

4. Heaps with links (9 points)

Suppose that binary max-heaps are represented using explicit links, that means in a standard binary tree representation that uses nodes with pointers/references to left and right children. Consider the problem of merging the binary max-heap L with the binary max-heap R. Assume both heaps are complete trees containing $2^{l} - 1$ and $2^{r} - 1$ nodes, respectively, and let $n = \max\{2^{l} - 1, 2^{r} - 1\}$.

a) (3 point)
Give an O(log n) algorithm to merge the two heaps if l = r.

- b) (3 point) Give an $O(\log n)$ algorithm to merge the two heaps if |l - r| = 1.
- c) (3 point)
 Give an O(log² n) algorithm to merge the two heaps regardless of l and r.

5. d-ary min-heaps (4 points)

How would you represent a *d*-ary min-heap in an array? Please give formulas for the children and for the parent of a node. What is the height of such a heap?