1/28/04

3. Homework Due 2/4/04 before class

From now on, if you are asked to design an algorithm for a problem, it always means that you should be as efficient as possible, and analyze the runtime. Also, always justify your answers.

1. Master theorem (10 points)

Use the master theorem to find tight asymptotic bounds for the following recurrences. Justify your results.

Assume that T(n) is constant for $n \leq 2$.

• (2 points)
$$T(n) = 4T(\frac{n}{3}) + n^4$$

• (2 points)
$$T(n) = T(\frac{n}{2}) + \sqrt{n}$$

- (2 points) $T(n) = T(\frac{7n}{8}) + n$
- (2 points) $T(n) = 9T(\frac{n}{3}) + n^2$
- (2 points) $T(n) = 5T(\frac{n}{2}) + n^2$

2. Polynomial multiplication (10 points)

• a) (3 points)

Show how to multiply two degree-1 polynomials ax + b and cx + d using only three multiplications. *Hint: One of the multiplications is* $(a + b) \cdot (c + d)$.

• b) (7 points)

Design a divide&conquer algorithm for multiplying two polynomials of degree n (so, of the form $a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 n + a_0$) in time $\Theta(n^{\log_2 3})$. Hint: Split the input polynomials into two parts, based on the parity of the powers of x. Then use part **a**) with polynomials of degree n/2 (in x^2) instead of constants.

3. Rolling dice (5 points)

• a) (3 points)

Use indicator variables to compute the expected value of the sum of two 10-sided dice.

• b) (2 points)

Use indicator variables to compute the expected value of the sum of k *n*-sided dice. The sum should be expressed in terms of k and n.

Clearly describe the sample space and the random variables you use.

FLIP over to back page \implies

4. Roulette (3 points)

The game SIMPLEROULETTE is played as follows: The roulette wheel has a slot for each number from 0 to 36. You can bet on any number between 1 and 36, but not on the number 0. A bet costs you \$10. If the ball drops on the slot with your number, you get paid \$360, otherwise you don't get paid anything.

Assuming that the wheel is fair (i.e., all numbers are equally likely), what is your expected win/loss in this game?

Clearly describe the sample space and the random variables you use.

5. Reading (2 points)

Read sections 5.1, 5.2, and 5.3. In order to receive the two points, write something to convince me that you actually read it.