1. Homework

Due $\mathbf{1 / 2 1 / 0 4}$ before class

1. Palindrome checker (7 points)

A palindrome is a string whose first half equals its last half reversed. So for example " 4456544 " or "hannah" or "abcdcba" are palindromes.
Write an algorithm which checks if a given string is a palindrome, and analyze its runtime. Please give a formal problem description (what are the input and output?), an informal and a formal desription of the algorithm, a proof of correctness (using a loop invariant), and its runtime analysis.

2. Code snippets (6 points)

For each of the code snippets below give their big-Oh runtime depending on n. Make your bound as tight as possible. Justify your answers.

```
(a) (2 points)
for(j=1; j<=n; j=j*7){
    for(i=n; i>=1; i=i/2){
        print(''hello'));
    }
}
(b) (2 points)
```

```
for(j=5; j<=n; j=j*j){
```

for(j=5; j<=n; j=j*j){
print(''hello'');
print(''hello'');
}
}
(c) (2 points)

```
```

for(i=1; i<=n*n; i+=1){

```
for(i=1; i<=n*n; i+=1){
    for(j=1; j<=i; j++){
    for(j=1; j<=i; j++){
        print(''no'');
        print(''no'');
        }
        }
}
```

}

```

\section*{3. Theta (2 points)}

Prove the following, using only the definitions of \(O\) and \(\Theta\) :
\(f(n) \in \Theta(g(n))\) if and only if \(f(n) \in O(g(n))\) and \(g(n) \in O(f(n))\)

\section*{4. Little-oh (2 points)}

Is \(n+13 n^{2} \in o\left(n^{2}\right)\) true? Justify your answer.

\section*{5. Big-Oh ranking (13 points)}

Rank the following functions by order of growth, i.e., find an arrangement \(f_{1}, f_{2}, \ldots\) of the functions satisfying \(f_{1} \in O\left(f_{2}\right), f_{2} \in O\left(f_{3}\right), \ldots\). Partition your list into equivalence classes such that \(f\) and \(g\) are in the same class if and only if \(f=\Theta(g)\). For every two functions \(f_{i}, f_{j}\) that are adjacent in your ordering, prove shortly why \(f_{i} \in O\left(f_{j}\right)\) holds. And if \(f\) and \(g\) are in the same clase, prove that \(f=\Theta(g)\).
\[
n^{2}, n!, n^{3}, 2^{2^{n}}, \log \log n, \log n, 1,4^{\log n}, n, 2^{n}, n \log n, 2^{n+1},(3 / 2)^{n}, \sqrt{n}
\]

Bear in mind that in some cases it might be useful to show \(f(n) \in o(g(n))\), since \(o(g(n)) \subset O(g(n))\). If you try to show that \(f(n) \in o(g(n))\), then it might be useful to apply the rule of l'Hôpital which states that
\[
\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}
\]
if the limits exist; where \(f^{\prime}(n)\) and \(g^{\prime}(n)\) are the derivatives of \(f\) and \(g\), respectively.```

