

Have seen so far

- Algorithms for various problems
- Running times $\mathrm{O}\left(n m^{2}\right), \mathrm{O}\left(n^{2}\right), \mathrm{O}(n \log n)$, $\mathrm{O}(n)$, etc.
- I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time?
- Not really...

Example difficult problem

Another difficult problem

- Traveling Salesperson Problem (TSP)
- Input: Undirected graph with lengths on edges
- Output: Shortest tour that visits each vertex exactly once

- Best known algorithm: $\mathrm{O}\left(\mathrm{n} 2^{n}\right)$ time.
- Clique:
- Input: Undirected graph $G=(V, E)$
- Output: Largest subset C of V such that every pair of vertices in C has an edge between them (C is called a clique)
- Best known algorithm:
$\mathrm{O}\left(n 2^{n}\right)$ time

What can we do ?

- Spend more time designing algorithms for those problems
- People tried for a few decades, no luck
- Prove there is no polynomial time algorithm for those problems
- Would be great
- Seems really difficult
- Best lower bounds for "natural" problems:
- $\Omega\left(n^{2}\right)$ for restricted computational models
- $4.5 n$ for unrestricted computational models

4/21/09
CS 3343 Analysis of Algorithms 5

What else can we do ?

- Show that those hard problems are essentially equivalent. I.e., if we can solve one of them in polynomial time, then all others can be solved in polynomial time as well.
- Works for at least 10000 hard problems

Summing up

- If we show that a problem Π is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that Π is hard.
- We need to:
- Identify the class of problems of interest
- Define the notion of equivalence
- Prove the equivalence(s)

Class of problems: NP

- Decision problems: answer YES or NO. E.g.,"is there a tour of length $\leq K^{\prime \prime}$?
- Solvable in non-deterministic polynomial time:
- Intuitively: the solution can be verified in polynomial time
- E.g., if someone gives us a tour T, we can verify in polynomial time if T is a tour of length $\leq K$.
- Therefore, the decision variant of TSP is in NP.

Decision problem vs. optimization problem

3 variants of Clique:

1. Input: Undirected graph $G=(V, E)$, and an integer $k \geq 0$. Output: Does G contain a clique of C such that $|C| \geq k$?
2. Input: Undirected graph $G=(V, E)$

Output: Largest integer k such that G contains a clique C with $|C|=k$.
3. Input: Undirected graph $G=(V, E)$ Output: Largest clique C of V.
3. is harder than 2. is harder than 1 . So, if we reason about the decision problem (1.), and can show that it is hard, then the others are hard as well. Also, every algorithm for $\mathbf{3}$. can solve $\mathbf{2}$. and $\mathbf{1}$. as well.
sis of Algorithms

CS 3343 Analysis of Algorithms

Decision problem vs. optimization problem (cont.)

Theorem:

a) If 1. can be solved in polynomial time, then 2. can be solved in polynomial time.
b) If 2. can be solved in polynomial time, then 3 . can be solved in polynomial time.

Proof:

a) Run 1. for values $k=1$..n. Instead of linear search one could also do binary search.
b) Run 2. to find the size $k_{\text {opt }}$ of a largest clique in G. Now check one edge after the other. Remove one edge from G, compute the new size of the largest clique in this new graph. If it is still $k_{\text {opt }}$ then this edge is not necessary for a clique. If it is less than $k_{\text {opt }}$ then it is part of the clique.

Examples of problems in NP

- Is "Does there exist a clique in G of size $\geq K$ " in NP?
Yes: $A(\mathrm{x}, y)$ interprets x as a graph G, y as a set C, and checks if all vertices in C are adjacent and if $|C| \geq K$
- Is Sorting in NP ?

No, not a decision problem.

- Is "Sortedness" in NP?

Yes: ignore y, and check if the input x is sorted.

Reductions: Π ' to Π

Reductions

- Π^{\prime} is polynomial time reducible to $\Pi\left(\Pi^{\prime} \leq \Pi\right)$ iff there is a polynomial time function f that maps inputs x ' for Π ' into inputs x for Π, such that for any x '

$$
\Pi^{\prime}\left(x^{\prime}\right)=\Pi\left(f\left(x^{\prime}\right)\right)
$$

- Fact 1: if $\Pi \in \mathrm{P}$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in \mathrm{P}$
- Fact 2: if $\Pi \in N P$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in N P$
- Fact 3 (transitivity):

$$
\text { if } \Pi^{\prime} \prime \leq \Pi^{\prime} \text { and } \Pi^{\prime} \leq \Pi \text { then } \Pi^{\prime \prime} \leq \Pi
$$

Clique again

- Clique (decision variant):
- Input: Undirected graph $G=(V, E)$, and an integer $K \geq 0$
- Output: Is there a clique C, i.e., a subset C of V such that every pair of vertices in C has an edge between them, such that $|C| \geq K$?

Independent set (IS)

- Input: Undirected graph $G=(V, E)$, and an integer $K \geq 0$
- Output: Is there a subset S
 of $V,|S| \geq K$ such that no pair of vertices in S has an edge between them? (S is called an independent set)

Clique \leq IS

- Given an input $G=(V, E), K$ to Clique, need to construct an input $\underbrace{G^{\prime}=\left(V^{\prime}, E^{\prime}\right), K^{\prime}}$, to IS,

$$
f\left(x^{\prime}\right)=x
$$

such that G has clique of size $\geq K$ iff G^{\prime} has IS of size $\geq K^{\prime}$.

- Construction: $K^{\prime}=K, V^{\prime}=V, E^{\prime}=\bar{E}$
- Reason: C is a clique in G iff it is an IS in G 's complement.

Vertex cover (VC)

- Input: undirected graph $G=(V, E)$, and $\mathrm{K} \geq 0$
- Output: is there a subset C
 of $V,|C| \leq K$, such that each edge in E is incident to at least one vertex in C.

IS \leq VC

- Given an input $G=(V, E), K$ to IS, need to construct an input $\underbrace{G^{\prime}=\left(V^{\prime}, E^{\prime}\right), K^{\prime}}$, to VC, such that $f\left(x^{\prime}\right)=x$
G has an IS of size $\geq K$ iff G^{\prime} has VC
 of size $\leq K^{\prime}$.
- Construction: $V^{\prime}=V, E^{\prime}=E, K^{\prime}=|V|-K$
- Reason: S is an IS in G iff $V-S$ is a VC in G.

4/21/09
CS 3343 Analysis of Algorithms

Recap

- We defined a large class of interesting problems, namely NP
- We have a way of saying that one problem is not harder than another $\left(\Pi^{\prime} \leq \Pi\right)$
- Our goal: show equivalence between hard problems

Showing equivalence between difficult problems

- Options:
- Show reductions between all pairs of problems
- Reduce the number of reductions using transitivity reduc
of "
Show that all problems in NP are reducible to a fixed Π.

To show that some problem $\prod^{\prime} \in N P$ is equivalent to all difficult problems, we only show $\Pi \leq \Pi^{\prime}$.

The first problem Π

- Satisfiability problem (SAT):
- Given: a formula φ with m clauses over n variables, e.g., $\quad x_{1} v x_{2} v x_{5}, x_{3} v \neg x_{5}$
- Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

4/21/09

- Fact: SAT \in NP
- Theorem [Cook'71]: For any $\prod^{\prime} \in \mathrm{NP}$ we have Π ' \leq SAT.
- Definition: A problem Π such that for any $\Pi^{\prime} \in$ NP we have $\Pi^{\prime} \leq \Pi$, is called $N P$-hard
- Definition: An NP-hard problem that belongs to NP is called NP-complete
- Corollary: SAT is NP-complete.

Clique again

- Clique (decision variant):
- Input: Undirected graph $G=(V, E)$, and an integer $K \geq 0$
- Output: Is there a clique C, i.e., a subset C of V such that every pair of vertices in C has an edge between them, such that $|C| \geq K$?
Conclusion: all of the above problems are NPcomplete

x^{x}

- Given a $\overbrace{\text { SAT formula } \varphi=C_{1}, \ldots, C_{\mathrm{m}}}$ over $x_{1}, \ldots, x_{\mathrm{n}}$, we need to produce

$$
\underbrace{G=(V, E) \text { and } K,}_{f\left(x^{\prime}\right)=x}
$$

such that φ satisfiable iff G has a clique of size $\geq K$.

- Notation: a literal is either x_{i} or $-x_{i}$

SAT \leq Clique example

Edge $v_{t}-v_{t}, \Leftrightarrow$
 t and t^{\prime} are not in the same clause, and
 - t is not the negation of t

- Formula: $x_{1} \vee x_{2} \vee x_{3}, \neg x_{2} \vee \neg x_{3}, \neg x_{1} \vee x_{2}$
- Graph:

- Claim: φ satisfiable iff G has a clique of size $\geq m$

Altogether

- We constructed a reduction that maps:
- YES inputs to SAT to YES inputs to Clique
- NO inputs to SAT to NO inputs to Clique
- The reduction works in polynomial time
- Therefore, SAT \leq Clique \rightarrow Clique NP-hard
- Clique is in NP \rightarrow Clique is NP-complete

