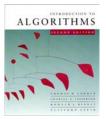


CS 3343 -- Spring 2009



More Divide & Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

2/5/09

CS 3343 Analysis of Algorithms

Powering a number

Problem: Compute a^n , where $n \in \mathbb{N}$.

Naive algorithm: $\Theta(n)$.

Divide-and-conquer algorithm: (recursive squaring)

$$a^{n} = \begin{cases} a^{n/2} \cdot a^{n/2} & \text{if } n \text{ is even;} \\ a^{(n-1)/2} \cdot a^{(n-1)/2} \cdot a & \text{if } n \text{ is odd.} \end{cases}$$

$$T(n) = T(n/2) + \Theta(1) \implies T(n) = \Theta(\log n)$$
.

2/5/09

CS 3343 Analysis of Algorithms

Fibonacci numbers

Recursive definition:

$$F_n = \begin{cases} 0 & \text{if } n = 0; \\ 1 & \text{if } n = 1; \\ F_{n-1} + F_{n-2} & \text{if } n \ge 2. \end{cases}$$

0 1 1 2 3 5 8 13 21 34 ...

Naive recursive algorithm: $\Omega(\phi^n)$ (exponential time), where $\phi = (1 + \sqrt{5})/2$ is the *golden ratio*.

2/5/09

CS 3343 Analysis of Algorithms

Computing Fibonacci numbers

Naive recursive squaring:

 $F_n = \phi^n / \sqrt{5}$ rounded to the nearest integer.

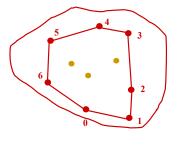
- Recursive squaring: $\Theta(\log n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Bottom-up (one-dimensional dynamic programming):

- Compute $F_0, F_1, F_2, ..., F_n$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

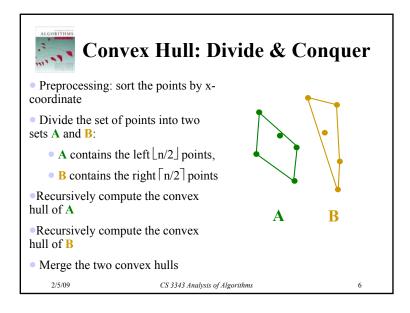
9 CS 3343 Analysis of Algorithms

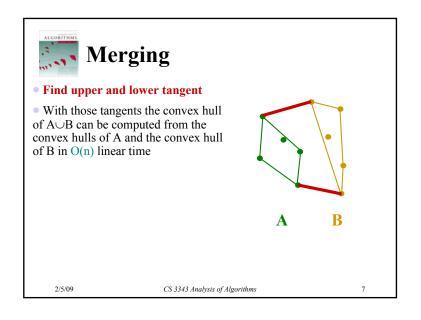
- Given a set of pins on a pinboard
- And a rubber band around them
- How does the rubber band look when it snaps tight?
- We represent convex hull as the sequence of points on the convex hull polygon, in counter-clockwise order.

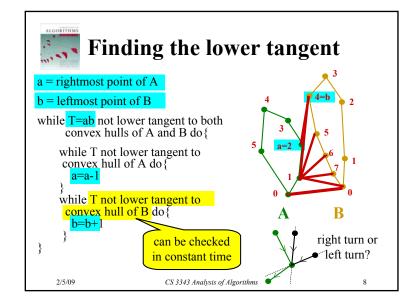


2/5/09

CS 3343 Analysis of Algorithms







Convex Hull: Runtime

- Preprocessing: sort the points by x- $O(n \log n)$ just once coordinate
- Divide the set of points into two O(1)sets A and B:
 - A contains the left $\lfloor n/2 \rfloor$ points,
 - B contains the right $\lceil n/2 \rceil$ points
- Recursively compute the convex T(n/2)hull of A
- Recursively compute the convex T(n/2)hull of B
- O(n)Merge the two convex hulls

2/5/09 CS 3343 Analysis of Algorithms

Convex Hull: Runtime

Runtime Recurrence:

$$T(n) = 2 T(n/2) + cn$$

• Solves to $T(n) = \Theta(n \log n)$

2/5/09

CS 3343 Analysis of Algorithms

Matrix multiplication

Input:
$$A = [a_{ij}], B = [b_{ij}].$$

Output: $C = [c_{ii}] = A \cdot B.$ $i, j = 1, 2, ..., n.$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix}$$

$$c_{ij} = \sum_{k=1}^{n} a_{ik} \cdot b_{kj}$$

2/5/09

CS 3343 Analysis of Algorithms

11

Standard algorithm

$$\begin{aligned} & \textbf{for } i \leftarrow 1 \textbf{ to } n \\ & \textbf{do for } j \leftarrow 1 \textbf{ to } n \\ & \textbf{do } c_{ij} \leftarrow 0 \\ & \textbf{for } k \leftarrow 1 \textbf{ to } n \\ & \textbf{do } c_{ij} \leftarrow c_{ij} + a_{ik} \cdot b_{kj} \end{aligned}$$

Running time = $\Theta(n^3)$

2/5/09 CS 3343 Analysis of Algorithms

■ Divide-and-conquer algorithm

IDEA:

 $n \times n$ matrix = 2×2 matrix of $(n/2) \times (n/2)$ submatrices:

$$\begin{bmatrix} r \mid s \\ -+- \\ t \mid u \end{bmatrix} = \begin{bmatrix} a \mid b \\ c \mid d \end{bmatrix} \cdot \begin{bmatrix} e \mid f \\ g \mid h \end{bmatrix}$$

$$C = A \cdot B$$

$$r = a \cdot e + b \cdot g$$

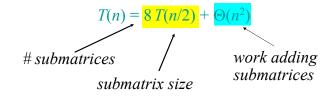
 $s = a \cdot f + b \cdot h$ 8 recursive mults of $(n/2) \times (n/2)$ submatrices
 $t = c \cdot e + d \cdot g$ 4 adds of $(n/2) \times (n/2)$ submatrices
 $u = c \cdot f + d \cdot h$

13

15

2/5/09 CS 3343 Analysis of Algorithms

Analysis of D&C algorithm



$$n^{\log_b a} = n^{\log_2 8} = n^3 \implies \text{CASE } 1 \implies T(n) = \Theta(n^3).$$

No better than the ordinary algorithm.

/09 CS 3343 Analysis of Algorithms

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h)$$
 $r = P_{5} + P_{4} - P_{2} + P_{6}$
 $P_{2} = (a + b) \cdot h$ $s = P_{1} + P_{2}$
 $P_{3} = (c + d) \cdot e$ $t = P_{3} + P_{4}$
 $P_{4} = d \cdot (g - e)$ $u = P_{5} + P_{1} - P_{3} - P_{7}$
 $P_{5} = (a + d) \cdot (e + h)$ $P_{6} = (b - d) \cdot (g + h)$ $P_{7} = (a - c) \cdot (e + f)$ To reliance on commutativity of mult!

ALGORITHMS

Strassen's idea

• Multiply 2×2 matrices with only 7 recursive mults.

$$P_{1} = a \cdot (f - h) \qquad r = P_{5} + P_{4} - P_{2} + P_{6}$$

$$P_{2} = (a + b) \cdot h \qquad = (a + d)(e + h)$$

$$P_{3} = (c + d) \cdot e \qquad + d(g - e) - (a + b)h$$

$$P_{4} = d \cdot (g - e) \qquad + (b - d)(g + h)$$

$$P_{5} = (a + d) \cdot (e + h) \qquad = ae + ah + de + dh$$

$$P_{6} = (b - d) \cdot (g + h) \qquad + dg - de - ah - bh$$

$$P_{7} = (a - c) \cdot (e + f) \qquad + bg + bh - dg - dh$$

$$= ae + bg$$

16

2/5/09 CS 3343 Analysis of Algorithms

2/5/09

CS 3343 Analysis of Algorithms

Strassen's algorithm

- 1. **Divide:** Partition A and B into $(n/2) \times (n/2)$ submatrices. Form P-terms to be multiplied using + and -.
- **2.** Conquer: Perform 7 multiplications of $(n/2) \times (n/2)$ submatrices recursively.
- 3. Combine: Form C using + and on $(n/2) \times (n/2)$ submatrices.

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

2/5/09

CS 3343 Analysis of Algorithms

17

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

Analysis of Strassen

$$T(n) = 7 T(n/2) + \Theta(n^2)$$

$$n^{\log_b a} = n^{\log_2 7} \approx n^{2.81} \implies \text{Case } 1 \implies T(n) = \Theta(n^{\log 7}).$$

The number 2.81 may not seem much smaller than 3, but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \ge 30$ or so.

Best to date (of theoretical interest only): $\Theta(n^{2.376\cdots})$.

2/5/09

CS 3343 Analysis of Algorithms

. .

2/5/09

CS 3343 Analysis of Algorithms