CS 3343 -- Spring 2009

ALGORITHMS

More Divide \& Conquer

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk
2/5/09 CS 3343 Analysis of Algorithms 1

Powering a number

Problem: Compute a^{n}, where $n \in \mathbf{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n)
\end{gathered}
$$

2/5/09
CS 3343 Analysis of Algorithms
2

Computing Fibonacci numbers

Naive recursive squaring:
$F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\log n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Bottom-up (one-dimensional dynamic programming):

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{\mathrm{n}}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

2/5/09
CS 3343 Analysis of Algorithms

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by $x-$ coordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points

Recursively compute the convex hull of A

- Recursively compute the convex

A B
hull of B

- Merge the two convex hulls

\therefore
 Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $O(n)$ linear time

A
A B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A

$\mathrm{b}=$ leftmost point of B
while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do \{
while T not lower tangent to convex hull of A do\{
\}
while T not lower tangent to convex hull of B do \{

\}
in constant time

```
can be checked
can be checked
A B


\section*{Convex Hull: Runtime}
- Preprocessing: sort the points by \(x-\) coordinate

Divide the set of points into two sets \(\mathbf{A}\) and \(\mathbb{B}\) :
- A contains the left \(\lfloor n / 2\rfloor\) points,
- B contains the right \(\lceil\mathrm{n} / 2\rceil\) points
- Recursively compute the convex hull of A
- Recursively compute the convex hull of B
- Merge the two convex hulls
\(\mathrm{O}(\mathrm{n} \log \mathrm{n})\) just once
\(\mathrm{T}(\mathrm{n} / 2)\)
\(\mathrm{O}(\mathrm{n})\)

\section*{Matrix multiplication}
\(\begin{array}{ll}\text { Input: } & \left.A=\left[a_{i j}\right], B=\left[b_{i j}\right] .\right\} \quad i, j=1,2, \ldots, n . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\)
\(\left[\begin{array}{cccc}c_{11} & c_{12} & \cdots & c_{1 n} \\ c_{21} & c_{22} & \cdots & c_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n 1} & c_{n 2} & \cdots & c_{n n}\end{array}\right]=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right] \cdot\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n 1} & b_{n 2} & \cdots & b_{n n}\end{array}\right]\)
\[
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\]

\section*{Divide-and-conquer algorithm}

IDEA:
\(n \times n\) matrix \(=2 \times 2\) matrix of \((n / 2) \times(n / 2)\) submatrices:
\[
\begin{aligned}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
\]
\(r=a \cdot e+b \cdot g\)
\(s=a \cdot f+b \cdot h\} 8\) recursive mults of \((n / 2) \times(n / 2)\) submatrices
\(t=c \cdot e+d \cdot g\} 4\) adds of \((n / 2) \times(n / 2)\) submatrices
\(u=c \cdot f+d \cdot h\)
2/5/09
CS 3343 Analysis of Algorithms

\section*{Analysis of D\&C algorithm}

\[
n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{3}\right)
\]

No better than the ordinary algorithm.

2/5/09
CS 3343 Analysis of Algorithms
14

\section*{Strassen's idea}
- Multiply \(2 \times 2\) matrices with only 7 recursive mults.
\[
\begin{aligned}
P_{1}=a \cdot(f-h) & r= & P_{5}+P_{4}-P_{2}+P_{6} \\
P_{2}=(a+b) \cdot h & = & (a+d)(e+h) \\
P_{3}=(c+d) \cdot e & & +d(g-e)-(a+b) h \\
P_{4}=d \cdot(g-e) & & +(b-d)(g+h) \\
P_{5}=(a+d) \cdot(e+h) & = & a e+a h+d e+d h \\
P_{6}=(b-d) \cdot(g+h) & & +d g-d e-a h-b h \\
P_{7}=(a-c) \cdot(e+f) & & +b g+b h-d g-d h \\
& & =a e+b g
\end{aligned}
\]

\section*{Strassen's algorithm}
1. Divide: Partition \(A\) and \(B\) into \((n / 2) \times(n / 2)\) submatrices. Form \(P\)-terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of \((n / 2) \times(n / 2)\) submatrices recursively.
3. Combine: Form \(C\) using + and - on \((n / 2) \times(n / 2)\) submatrices.
\[
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
\]

\section*{Analysis of Strassen}
\[
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
\]
\[
n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow \text { CASE } 1 \Rightarrow T(n)=\Theta\left(n^{\log 7}\right) .
\]

The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for \(n \geq 30\) or so.

Best to date (of theoretical interest only): \(\Theta\left(n^{2.376 \cdots}\right)\)

\section*{Conclusion}
- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms```

