
1

2/3/09 CS 3343 Analysis of Algorithms 1

CS 3343 -- Spring 2009

Master Theorem
Carola Wenk

Slides courtesy of Charles Leiserson with small
changes by Carola Wenk

2/3/09 CS 3343 Analysis of Algorithms 2

The divide-and-conquer
design paradigm

1. Divide the problem (instance) into
subproblems.

a subproblems, each of size n/b
2. Conquer the subproblems by solving them

recursively.
3. Combine subproblem solutions.

Runtime for divide and combine is f(n)

2/3/09 CS 3343 Analysis of Algorithms 3

Example: merge sort
1. Divide: Trivial.
2. Conquer: Recursively sort a=2

subarrays of size n/2=n/b
3. Combine: Linear-time merge, runtime

f(n)∈O(n)

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
T(n) = a T(n/b) + f(n)

2/3/09 CS 3343 Analysis of Algorithms 4

The master method

The master method applies to recurrences of
the form

T(n) = a T(n/b) + f (n) ,
where a ≥ 1, b > 1, and f is asymptotically
positive.

2

2/3/09 CS 3343 Analysis of Algorithms 5

Master theorem (summary)
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba – ε)
⇒ T(n) = Θ(nlogba) .

CASE 2: f (n) = Θ(nlogba logkn)
⇒ T(n) = Θ(nlogba logk+1n) .

CASE 3: f (n) = Ω(nlogba + ε) and a f (n/b) ≤ c f (n)
for some constant c < 1.

⇒ T(n) = Θ(f (n)) .
2/3/09 CS 3343 Analysis of Algorithms 6

Three common cases
Compare f (n) with nlogba:
1. f (n) = O(nlogba – ε) for some constant ε > 0.

• f (n) grows polynomially slower than nlogba

(by an nε factor).
Solution: T(n) = Θ(nlogba) .

2. f (n) = Θ(nlogba logkn) for some constant k ≥ 0.
• f (n) and nlogba grow at similar rates.
Solution: T(n) = Θ(nlogba logk+1n) .

2/3/09 CS 3343 Analysis of Algorithms 7

Three common cases (cont.)
Compare f (n) with nlogba:

3. f (n) = Ω(nlogba + ε) for some constant ε > 0.
• f (n) grows polynomially faster than nlogba (by

an nε factor),
and f (n) satisfies the regularity condition that
a f (n/b) ≤ c f (n) for some constant c < 1.
Solution: T(n) = Θ(f (n)) .

2/3/09 CS 3343 Analysis of Algorithms 8

Examples

Ex. T(n) = 4T(n/2) + sqrt(n)
a = 4, b = 2 ⇒ nlogba = n2; f (n) = sqrt(n).
CASE 1: f (n) = O(n2 – ε) for ε = 1.5.
∴ T(n) = Θ(n2).

Ex. T(n) = 4T(n/2) + n2

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2.
CASE 2: f (n) = Θ(n2log0n), that is, k = 0.
∴ T(n) = Θ(n2log n).

3

2/3/09 CS 3343 Analysis of Algorithms 9

Examples

Ex. T(n) = 4T(n/2) + n3

a = 4, b = 2 ⇒ nlogba = n2; f (n) = n3.
CASE 3: f (n) = Ω(n2 + ε) for ε = 1

and 4(n/2)3 ≤ cn3 (reg. cond.) for c = 1/2.
∴ T(n) = Θ(n3).

Ex. T(n) = 4T(n/2) + n2/logn
a = 4, b = 2 ⇒ nlogba = n2; f (n) = n2/logn.
Master method does not apply. In particular,
for every constant ε > 0, we have log n ∈ o(nε).

2/3/09 CS 3343 Analysis of Algorithms 10

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

T(n) = 2 T(n/2) + O(n)
subproblems subproblem size work dividing

and combining
nlogba = nlog22 = n1 = n ⇒ CASE 2 (k = 0)

⇒ T(n) = Θ(n log n) .

2/3/09 CS 3343 Analysis of Algorithms 11

Recurrence for binary search

T(n) = 1 T(n/2) + Θ(1)

subproblems
subproblem size

work dividing
and combining

nlogba = nlog21 = n0 = 1 ⇒ CASE 2 (k = 0)
⇒ T(n) = Θ(log n) .

