CS 3343 -- Spring 2009

Master Theorem

Carola Wenk
Slides courtesy of Charles Leiserson with small changes by Carola Wenk
2/3/09
CS 3343 Analysis of Algorithms 1

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems.
a subproblems, each of size n / b
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Runtime for divide and combine is $f(n)$

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort $a=2$ subarrays of size $n / 2=n / b$
3. Combine: Linear-time merge, runtime $f(n) \in O(n)$

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Master theorem (summary)

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1: $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)
$$

CASE 2: $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$

$$
\Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)
$$

CASE 3: $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ and $a f(n / b) \leq c f(n)$ for some constant $c<1$.

$$
\Rightarrow T(n)=\Theta(f(n))
$$

Three common cases (cont.)

Compare $f(n)$ with $n^{\log _{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$. - $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Examples

Ex. $T(n)=4 T(n / 2)+\operatorname{sqrt}(n)$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=\operatorname{sqrt}(n)$.
CASE 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1.5$.
$\therefore T(n)=\Theta\left(n^{2}\right)$.

Ex. $T(n)=4 T(n / 2)+n^{2}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
CASE 2: $f(n)=\Theta\left(n^{2} \log ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \log n\right)$.

Examples

Ex. $T(n)=4 T(n / 2)+n^{3}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3}$.
CASE 3: $f(n)=\Omega\left(n^{2+\varepsilon}\right)$ for $\varepsilon=1$
and $4(n / 2)^{3} \leq c n^{3}$ (reg. cond.) for $c=1 / 2$.
$\therefore T(n)=\Theta\left(n^{3}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2} / \log n$
$a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2} / \log n$.
Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $\log n \in o\left(n^{\varepsilon}\right)$.

Example: merge sort

1. Divide: Trivial.

2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.
\# subproblems $\begin{aligned} & T(n)=2 T(n / 2)+O(n) \\ & \text { subproblem size work dividing }\end{aligned}$ and combining

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 2}=n^{1}=\mathrm{n} \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(n \log n) .
\end{aligned}
$$

2/3/09
CS 3343 Analysis of Algorithms

Recurrence for binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(\log n)
\end{aligned}
$$

