2/3/09

3. Homework Due 2/10/09 before class

1. Master theorem (8 points)

Use the master theorem to solve the following recurrences. Justify your results. Assume that T(1) = 1.

- $T(n) = 8T(\frac{n}{2}) + n^3 \log^3 n$
- $T(n) = 81T(\frac{n}{3}) + n^2 \log^2 n$
- $T(n) = T(\frac{n}{2}) + \log n$
- $T(n) = 16T(\frac{n}{4}) + n^2\sqrt{n}$

2. Divide and Conquer (7 points)

Let A[1..n] be an array of *n* distinct numbers. An *inversion* is a pair (A[i], A[j]) where i < j and A[i] > A[j], i.e., the numbers are out of order. In this problem we want to count the number of inversions in *A*. For example if A[1..8] = 3,7,4,8,2,9,1,6 then there are 14 inversions: (3,2), (3,1), (7,4), (7,2), (7,1), (7,6), (4,2), (4,1), (8,2), (8,1), (8,6), (2,1), (9,1), (9,6).

- (a) (1 point) In the best case, how many inversions can an array of n numbers have? Justify your answer.
- (b) (1 point) In the worst case, how many inversions can an array of n numbers have? Justify your answer.
- (c) (5 points) Write a divide-and-conquer algorithm that counts the number of inversions in an array.
 - Follow the standard divide and conquer approach by dividing in half and recursing on both halves. How can you use the sub-solutions to obtain a solution for the whole array?
 - Try to develop an algorithm that is as efficient as possible. It is relatively easy to get a $O(n^2)$ algorithm, $O(n \log^2 n)$ is a bit harder, and even $O(n \log n)$ is possible. (For the latter you may need a preprocessing step that makes a copy of the input array and sorts it.) You will get more points for a more efficient algorithm.
 - Analyze your runtime by setting up a runtime recurrence and using the master theorem to solve it.

FLIP over to back page \implies

3. Guessing and Induction (12 points)

For each of the following recurrences use the recursion tree method to find a good guess of what it could solve to. Make your guess as tight as possible. Then prove that T(n) is in big-Oh of your guess by big-Oh-induction (= substitution method; including base case and inductive case).

Every recursion below is stated for $n \ge 2$, and the base case is T(1) = 1.

(a)
$$T(n) = 4T(\frac{n}{2}) + n^2$$

(b) $T(n) = 2T(\frac{n}{3}) + 5n$ (Hint: You may want to use $\log_3 n$ instead of $\log_2 n$.)