
CS 3343 Analysis of Algorithms – Spring 09

1/20/09

1. Homework
Due 1/27/09 before class

1. Code snippets (4 points)

For each of the code snippets below give their Θ-runtime depending on n. Justify
your answers.

(a) (2 points)

for(i=n; i>=1; i=i-1){
for(j=1; j<=i; j=j+1){

print(" ");
}

}

(b) (2 points) Note that log is base 2.

for(i=1; i<=n; i=i+1){
for(j=1; log(j)<=n; j=j+1){

print(" ");
}

}

(c) (2 points)

for(i=5; i<=n; i=2*i){
print(" ");

}

for(i=5; i<=5*n; i=i+1){
print(" ");

}

2. O and Ω (4 points)

Show using the definitions of big-Oh and Θ:

(a) If f1(n) ∈ O(g(n)) and f2(n) ∈ O(g(n)) then f1(n) + f2(n) ∈ O(g(n)).

(b) If f1(n) ∈ Θ(g(n)) and f2(n) ∈ Θ(g(n)) then f1(n) + f2(n) ∈ Θ(g(n)).

Flip over to back page =⇒



3. Smart linear search (4 points)

Let A[1..n] be an array of n numbers that is sorted in ascending order. Consider
searching A for an element x using smart linear search. Smart linear search goes
through the array from beginning to end as follows: It compares A[1] to x. If both
are equal then x has been found and the index 1 is returned. Only if x is greater
than A[1] the search continues in the same way with A[2], otherwise the algorithm
ends reporting that x was not found. This continues with A[3], A[4],..., either until
x was found, the algorithm reports that x was not found, or the end of the array
has been reached.

• (2 points) Write pseudocode for this algorithm.

• (2 points) Give best-case and worst-case running times (and example inputs
attaining these runtimes) in Θ-notation. Note that the input consists of both
A and x.

4. Big-Oh ranking (7 points)
Rank the following functions by order of growth, i.e., find an arrangement f1, f2, ...
of the functions satisfying f1 ∈ O(f2), f2 ∈ O(f3),... . Partition your list into
equivalence classes such that f and g are in the same class if and only if f ∈ Θ(g).
For every two functions fi, fj that are adjacent in your ordering, prove shortly why
fi ∈ O(fj) holds. And if f and g are in the same class, prove that f ∈ Θ(g).

2n
√

n, n2, 2n2 + 2n + 2, log n, 2n, n log n, 2n+1

Bear in mind that in some cases it might be useful to show f(n) ∈ o(g(n)), since
o(g(n)) ⊂ O(g(n)). If you try to show that f(n) ∈ o(g(n)), then it might be useful
to apply the rule of l’Hôpital which states that

lim
n→∞

f(n)
g(n)

= lim
n→∞

f ′(n)
g′(n)

if the limits exist; where f ′(n) and g′(n) are the derivatives of f and g, respectively.


