

CS 5633 -- Spring 2005

The Master Theorem

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

2/7/06

CS 5633 Analysis of Algorithms

The master method

The master method applies to recurrences of the form

$$T(n) = a T(n/b) + f(n),$$

where $a \ge 1$, b > 1, and f is asymptotically positive.

2/7/06

CS 5633 Analysis of Algorithms

Master theorem

$$T(n) = a T(n/b) + f(n)$$

Case 1:
$$f(n) = O(n^{\log_b a - \varepsilon})$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a})$.

Case 2:
$$f(n) = \Theta(n^{\log_b a})$$

 $\Rightarrow T(n) = \Theta(n^{\log_b a} \log n)$.

Case 3:
$$f(n) = \Omega(n^{\log_b a + \varepsilon})$$
 and $af(n/b) \le cf(n)$
 $\Rightarrow T(n) = \Theta(f(n))$.

Merge sort:
$$a = 2$$
, $b = 2 \Rightarrow n^{\log_b a} = n$
 $\Rightarrow \text{Case 2}(k = 0) \Rightarrow T(n) = \Theta(n \log n)$.

2/7/06

CS 5633 Analysis of Algorithms

Three common cases

Compare f(n) with $n^{\log_b a}$:

- 1. $f(n) = O(n^{\log_b a \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially slower than $n^{\log_b a}$ (by an n^{ε} factor).

Solution:
$$T(n) = \Theta(n^{\log_b a})$$
.

- 2. $f(n) = \Theta(n^{\log_b a})$.
 - f(n) and $n^{\log_b a}$ grow at similar rates.

Solution:
$$T(n) = \Theta(n^{\log_b a} \log n)$$
.

2/7/06

CS 5633 Analysis of Algorithms

4

Three common cases (cont.)

Compare f(n) with $n^{\log_b a}$:

- 3. $f(n) = \Omega(n^{\log_b a + \varepsilon})$ for some constant $\varepsilon > 0$.
 - f(n) grows polynomially faster than $n^{\log_b a}$ (by an n^{ε} factor),

and f(n) satisfies the regularity condition that $af(n/b) \le cf(n)$ for some constant c < 1.

Solution: $T(n) = \Theta(f(n))$.

2/7/00

CS 5633 Analysis of Algorithms

5

Examples

Ex.
$$T(n) = 4T(n/2) + n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n.$
CASE 1: $f(n) = O(n^{2-\epsilon})$ for $\epsilon = 1$.
 $\therefore T(n) = \Theta(n^2).$

Ex.
$$T(n) = 4T(n/2) + n^2$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2.$
Case 2: $f(n) = \Theta(n^2).$
 $\therefore T(n) = \Theta(n^2 \log n).$

2/7/06

CS 5633 Analysis of Algorithms

Examples

Ex.
$$T(n) = 4T(n/2) + n^3$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^3.$
Case 3: $f(n) = \Omega(n^{2+\epsilon})$ for $\epsilon = 1$
and $4(n/2)^3 \le cn^3$ (reg. cond.) for $c = 1/2$.
 $\therefore T(n) = \Theta(n^3).$

Ex.
$$T(n) = 4T(n/2) + n^2/\log n$$

 $a = 4, b = 2 \Rightarrow n^{\log_b a} = n^2; f(n) = n^2/\log n.$
Master method does not apply. In particular, for every constant $\varepsilon > 0$, we have $n^{\varepsilon} = \omega(\log n)$.

ALGORITHM

Extended Case 2

Compare f(n) with $n^{\log_b a}$:

 $f(n) = \Theta(n^{\log_b a} \log^k n)$ for some constant $k \ge 0$.

• f(n) and $n^{\log_b a}$ grow at similar rates.

Solution: $T(n) = \Theta(n^{\log_b a} \log^{k+1} n)$.

2/7/06

CS 5633 Analysis of Algorithms

7

2/7/06

CS 5633 Analysis of Algorithms

8