CS 5633 -- Spring 2005

The Master Theorem Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk
2/7/06
CS 5633 Analysis of Algorithms 1

2/7/06 CS 5633 Analysis of Algorithms

Three common cases

Compare $f(n)$ with $n^{\log b} a$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log b a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a}\right)$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log b} b^{2} \log n\right)$.

Three common cases (cont.)

Compare $f(n)$ with $n^{\log _{b} a}$:
3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$. - $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Examples

Ex. $T(n)=4 T(n / 2)+n^{3}$
$a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{3}$.
Case 3: $f(n)=\Omega\left(n^{2+\varepsilon}\right)$ for $\varepsilon=1$
and $4(n / 2)^{3} \leq c n^{3}$ (reg. cond.) for $c=1 / 2$.
$\therefore T(n)=\Theta\left(n^{3}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2} / \log n$
$a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2} / \log n$.
Master method does not apply. In particular, for every constant $\varepsilon>0$, we have $n^{\varepsilon}=\omega(\log n)$.

