Convex Hull

- Given a set of pins on a pinboard - And a rubber band around them
- How does the rubber band look when it snaps tight?
- We represent the convex hull as
 the sequence of points on the convex hull polygon, in counter-clockwise order.

Convex Hull: Runtime

Preprocessing: sort the points by x coordinate	$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ just once
Divide the set of points into two sets \mathbf{A} and \mathbb{B} :	$\mathrm{O}(1)$
- A contains the left $\lfloor\mathrm{n} / 2\rfloor$ points, - B contains the right $\lceil n / 2\rceil$ points	
- Recursively compute the convex hull of A	$\mathrm{T}(\mathrm{n} / 2)$
- Recursively compute the convex hull of \mathbb{B}	$\mathrm{T}(\mathrm{n} / 2)$
- Merge the two convex hulls	$\mathrm{O}(\mathrm{n})$
2/9/06 CS 3343 Analysis of Algorithms	ns 3

- Preprocessing: sort the points by $\mathrm{x}-$ coordinate ets A and B:
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil n / 2\rceil$ points
- Recursively compute the convex hull of A

Recursively compute the convex
(n

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by $\mathrm{x}-$ coordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor\mathrm{n} / 2\rfloor$ points,
- \mathbb{B} contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A
- Recursively compute the convex hull of B
- Merge the two convex hulls

2/9/06
CS 3343 Analysis of Algorithms
2

Convex Hull: Runtime

- Runtime Recurrence:

$$
T(n)=2 T(n / 2)+c n
$$

- Solves to $T(n)=\Theta(n \log n)$

Merging in $\mathrm{O}(n)$ time

- Find upper and lower tangents in $\mathrm{O}(n)$ time
- Compute the convex hull of $A \cup B$:
- walk counterclockwise around the convex hull of A, starting with left endpoint of lower tangent
- when hitting the left endpoint of the upper tangent, cross over to the convex hull of B
- walk counterclockwise around the convex hull of B

Finding the lower tangent in $\mathrm{O}(n)$ time

$a=$ rightmost point of A
$b=$ leftmost point of B
while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do\{
while T not lower tangent to convex hull of A do $\{$

```
    a=a-1
```

 \}
 while T not lower tangent to convex hull of B do \{

- when hitting right endpoint of the lower

$b=b+1$

\}

- This takes $\mathrm{O}(n)$ time

2/9/06
CS 3343 Analysis of Algorithms

Convex Hull: Runtime

- Preprocessing: sort the points by x coordinate
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ just once
- Divide the set of points into two sets A and B:
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil n / 2\rceil$ points
- Recursively compute the convex hull of A
$\stackrel{\text { Recursively compute the convex }}{ } \mathrm{T}(\mathrm{n} / 2)$ hull of B
- Merge the two convex hulls

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $T(n)=\Theta(n \log n)$

