CS 3343 - Fall 2011

Randomized Algorithms \& Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Deterministic Algorithms

Runtime for deterministic algorithms with input size n :

- Best-case runtime
\rightarrow Attained by one input of size n
- Worst-case runtime
\rightarrow Attained by one input of size n
- Average runtime
\rightarrow Averaged over all possible inputs of size n

Aeterministic Algorithms: Insertion Sort

Best-case runtime: $O(n)$, input $[1,2,3, \ldots, n]$
\rightarrow Attained by one input of size n

- Worst-case runtime: $O\left(n^{2}\right)$, input $[n, n-1, \ldots, 2,1]$
\rightarrow Attained by one input of size n
- Average runtime : $O\left(n^{2}\right)$; see book for analysis
\rightarrow Averaged over all possible inputs of size n
-What kind of inputs are there?
- How many inputs are there?

Average Runtime

- What kind of inputs are there?
- Do [1,2, ...,n] and [5,6,...,n+5] cause different behavior of Insertion Sort?
- No. Therefore it suffices to only consider all permutations of $[1,2, \ldots, n]$.
- How many inputs are there?
- There are n ! different permutations of [1,2,...,n]
// insert $A[j]$ into sorted sequen $i=j-1$

``` \\ \title{
Average Runtime \\ \title{
Average Runtime Insertion Sort: \(n=4\)
}
while(i>0 \&\& A[i]>key) \{ \(\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]\)
- Inputs: 4 ! \(=24\)
[1,2,3,4] 0
[4,1,2,3] 3
[4,1,3,2] 4
[4,3,2,1] 6
[2,1,3,4] 1
[1,4,2,3] 2
[1,4,3,2] 3
[3,4,2,1] 5
[1,3,2,4] 1
[1,2,4,3] 1
[1,3,4,2] 2
[3,2,4,1] 4
[3,1,2,4] 2
[4,2,1,3] 4
[4,3,1,2] 5
[4,2,3,1] 5
[3,2,1,4] 3
[2,1,4,3] 2
[3,4,1,2] 4
[2,4,3,1] 4
[2,3,1,4] 2
[2,1,3,4] 1
[3,1,4,2] 3
[2,3,4,1] 3
- Runtime is proportional to: \(3+\) \#times in while loop


\section*{Average Runtime: Insertion Sort}
- The average runtime averages runtimes over all \(n\) ! different input permutations
- Disadvantage of considering average runtime:
- There are still worst-case inputs that will have the worst-case runtime
- Are all inputs really equally likely? That depends on the application
\(\Rightarrow\) Better: Use a randomized algorithm

\section*{Randomized Algorithm:} Insertion Sort
- Randomize the order of the input array:
- Either prior to calling insertion sort,
- or during insertion sort (insert random element)
- This makes the runtime depend on a probabilistic experiment (sequence of numbers obtained from random number generator)
\(\Rightarrow\) Runtime is a random variable (maps sequence of random numbers to runtimes)
- Expected runtime \(=\) expected value of runtime random variable

\section*{Randomized Algorithm: Insertion Sort}
- Runtime is independent of input order ([1,2,3,4] may have good or bad runtime, depending on sequence of random numbers)
- No assumptions need to be made about input distribution
- No one specific input elicits worst-case behavior
- The worst case is determined only by the output of a random-number generator.
\(\Rightarrow\) When possible use expected runtimes of randomized algorithms instead of average case analysis of deterministic algorithms

\section*{Quicksort}
- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

\section*{Quicksort: Divide and conquer}

Quicksort an \(n\)-element array:
1. Divide: Partition the array into two subarrays around a pivot \(x\) such that elements in lower subarray \(\leq x \leq\) elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

\section*{Partitioning subroutine}
```

Partition(A,p,q) \trianglerightA[p . q]
x\leftarrowA[p] \triangleright pivot = A[p]
i\leftarrowp
for }j\leftarrowp+1\mathbf{to q
do if }A[j]\leq

```
Running time elements.
```

= O(n) for n
then $i \leftarrow i+1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[p] \leftrightarrow A[i]$ return i

```


\section*{Example of partitioning}


\section*{Example of partitioning}


\section*{Example of partitioning}


\section*{Example of partitioning}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\hline
\end{tabular}


\section*{Example of partitioning}


\section*{Example of partitioning}


\section*{Example of partitioning}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\hline
\end{tabular}


\section*{Example of partitioning}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\hline
\end{tabular}


\section*{Example of partitioning}

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\hline
\end{tabular}


\section*{Example of partitioning}

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\hline
\end{tabular}


\section*{Example of partitioning}

\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 6 & 10 & 13 & 5 & 8 & 3 & 2 & 11 \\
\hline 6 & 5 & 13 & 10 & 8 & 3 & 2 & 11 \\
\hline \hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 3 & 10 & 8 & 13 & 2 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|l|}
\hline 6 & 5 & 3 & 2 & 8 & 13 & 10 & 11 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 2 & 5 & \multicolumn{2}{|l|}{3} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} & \begin{tabular}{l|l|l|l}
6 & 8 & 13 & \\
\hline
\end{tabular} & 10 & & 11 \\
\hline
\end{tabular}

\section*{Pseudocode for quicksort}

Quicksort \((A, p, r)\)

\section*{if \(p<r\)}
then \(q \leftarrow \operatorname{Partition}(A, p, r)\)
Quicksort( \(A, p, q-1\) )
Quicksort (A, \(q+1, r)\)

\section*{Initial call: Quicksort(A, 1, n)}

\section*{Analysis of quicksort}
- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.
- Let \(T(n)=\) worst-case running time on an array of \(n\) elements.

\section*{ALGORITHMS \\ Worst-case of quicksort}

Quicksort \((A, p, r)\)
if \(p<r\) then \(q \leftarrow \operatorname{Partition}(A, p, r)\)

Quicksort \((A, p, q-1)\)
Quicksort \((A, q+1, r)\)
- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.
\[
\begin{aligned}
T(n) & =T(0)+T(n-1)+\Theta(n) \\
& =\Theta(1)+T(n-1)+\Theta(n) \\
& =T(n-1)+\Theta(n) \\
& =\Theta\left(n^{2}\right) \quad \text { (arithmetic series) }
\end{aligned}
\]

\section*{Worst-case recursion tree}
\[
T(n)=T(0)+T(n-1)+c n
\]
\(\therefore\) Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]
\(T(n)\)
\(\therefore\) Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]

\(\therefore\) Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]

\(\therefore\) Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]


\[
\Theta(1)
\]
N.... Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]

N.... Worst-case recursion tree
\[
T(n)=T(0)+T(n-1)+c n
\]


\section*{Worst-case recursion tree}
\[
T(n)=T(0)+T(n-1)+c n
\]


\section*{Best-case analysis (For intuition only!)}

If we're lucky, Partition splits the array evenly:
\[
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \log n) \quad \text { (same as merge sort) }
\end{aligned}
\]

What if the split is always \(\frac{1}{10}: \frac{9}{10}\) ?
\[
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
\]

What is the solution to this recurrence?
\(\ldots\) Analysis of "almost-best" case
\[
T(n)
\]
…․ Analysis of "almost-best" case

…․ Analysis of "almost-best" case




\section*{Quicksort Runtimes}
- Best case runtime \(\mathrm{T}_{\text {best }}(n) \in \mathrm{O}(n \log n)\)
- Worst case runtime \(\mathrm{T}_{\text {worst }}(n) \in \mathrm{O}\left(n^{2}\right)\)
- Worse than mergesort? Why is it called quicksort then?
- Its average runtime \(\mathrm{T}_{\text {avg }}(n) \in \mathrm{O}(n \log n)\)
- Better even, the expected runtime of randomized quicksort is \(\mathrm{O}(n \log n)\)

\section*{Average Runtime}

The average runtime \(T_{\text {avg }}(n)\) for Quicksort is the average runtime over all possible inputs of length \(n\).
- \(\mathrm{T}_{\text {avg }}(n)\) has to average the runtimes over all \(n\) ! different input permutations.
- There are still worst-case inputs that will have a \(\mathrm{O}\left(n^{2}\right)\) runtime
\(\Rightarrow\) Better: Use randomized quicksort

\section*{Randomized quicksort}

Idea: Partition around a random element.
- Running time is independent of the input order. It depends only on the sequence \(s\) of random numbers.
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence \(s\) of random numbers.

\section*{Randomized quicksort} analysis
- \(T(n, s)=\) random variable for the running time of randomized quicksort on an input of size \(n\), with sequence \(s\) of random numbers which are assumed to be independent.
- \(E(T(n))\) = expected value of \(T(n, s)\), the "expected runtime" of randomized quicksort.
\[
T(n, s)=\left\{\begin{array}{cc}
T(0, s)+T(n-1, s)+\Theta(n) & \text { if } 0: n-1 \text { split } \\
T(1, s)+T(n-2, s)+\Theta(n) & \text { if } 1: n-2 \text { split, } \\
\ldots & \\
T(n-1, s)+T(0, s)+\Theta(n) & \text { if } n-1: 0 \text { split }
\end{array}\right.
\]

\section*{ALGORITHM \(\rightarrow\) \\ Randomized quicksort analysis}

For \(k=0,1, \ldots, n-1\), define the indicator random variable
\(X_{k}(s)= \begin{cases}1 & \text { if Partition generates a } k: n-k-1 \text { split, } \\ 0 & \text { otherwise } .\end{cases}\)
\(E\left[X_{k}\right]=\operatorname{Pr}\left\{X_{k}=1\right\}=1 / n\), since all splits are equally likely, assuming elements are distinct.

\section*{Analysis (continued)}
\[
\begin{aligned}
T(n, s) & =\left\{\begin{array}{cc}
T(0, s)+T(n-1, s)+\Theta(n) & \text { if } 0: n-1 \text { split, } \\
T(1, s)+T(n-2, s)+\Theta(n) & \text { if } 1: n-2 \text { split, } \\
\ldots & \text { if } n-1: 0 \text { split, } \\
T(n-1, s)+T(0, s)+\Theta(n) & \\
& =\sum_{k=0}^{n-1} X_{k}(s)(T(k, s)+T(n-k-1, s)+\dot{\Theta}(n))
\end{array}\right.
\end{aligned}
\]

는 Calculating expectation
\[
E[T(n)]=E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right]
\]

Take expectations of both sides.

\section*{Calculating expectation}
\[
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right]
\end{aligned}
\]

\section*{Linearity of expectation.}

\section*{Calculating expectation}
\[
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)]
\end{aligned}
\]

Independence of \(X_{k}\) from other random choices.

\section*{Calculating expectation}
\[
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
& =\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\end{aligned}
\]

Linearity of expectation; \(E\left[X_{k}\right]=1 / n\).

\section*{Calculating expectation}
\[
\begin{aligned}
& E[T(n)]=E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&=\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&=\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
&=\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n) \\
&=\frac{2}{n} \sum_{k=0}^{n-1} E[T(k)]+\Theta(n) \quad \text { Summations have } \\
& \quad \text { identical terms. }
\end{aligned}
\]

\section*{Hairy recurrence}
\[
E[T(n)]=\frac{2}{n_{k=2}^{n-1}} E[T(k)]+\Theta(n)
\]
(The \(k=0,1\) terms can be absorbed in the \(\Theta(n)\).)
Prove: \(E[T(n)] \leq a n \log n\) for constant \(a>0\).
- Choose \(a\) large enough so that \(a n \log n\) dominates \(E[T(n)]\) for sufficiently small \(n \geq 2\).

Use fact: \(\sum_{k=2}^{n-1} k \log k \leq \frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2} \quad\) (exercise).

\section*{Substitution method}
\(E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \log k+\Theta(n)\)
Substitute inductive hypothesis.

\section*{Substitution method}
\[
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \log k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2}\right)+\Theta(n)
\end{aligned}
\]

Use fact.

\section*{Substitution method}
\[
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \log k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
& =a n \log n-\left(\frac{a n}{4}-\Theta(n)\right)
\end{aligned}
\]

Express as desired - residual.

\section*{Substitution method}
\[
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \log k+\Theta(n) \\
& =\frac{2 a}{n}\left(\frac{1}{2} n^{2} \log n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
& =\text { an } \log n-\left(\frac{a n}{4}-\Theta(n)\right) \\
& \leq \text { an } \log n
\end{aligned}
\]
if \(a\) is chosen large enough so that an/4 dominates the \(\Theta(n)\).

\section*{Quicksort in practice}
- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

\section*{ALGORITHMS Average Runtime vs. Expected Runtime}
- Average runtime is averaged over all inputs of a deterministic algorithm.
- Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.
- De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.```

