3343 Analysis of Algorithms – Fall 11

Schedule

11/3/11

(subject to change)

Date	Material			
Th $8/25$	Analyzing algorithms (Ch. 2.2)			
·	Best case and worst case runtimes; insertion sort, incremental algorithm			
			No recitation	
Tu 8/30	Asymptotic notation (Ch. 3, Ch. A)			
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets			
	Homework 1 assigned	Recitation:	Homework 1	
Th 9/1	Asymptotic notation (Ch. 3, Ch. A)			
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets	Recitation:	Homework 1	
Tu 9/6	Heapsort (Ch. 6)			
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap			
	Homework 1 due; homework 2 assigned	Recitation:	Homework 2	
Th 9/8	Recursion trees and induction (+)			
	Recursive algorithms. Guess solution of recurrence using recursion trees and prove			
	the correctness of the solution using induction.	Recitation:	Homework 2	
Tu 9/13	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.3, 4.4)			
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Big-Oh induc-			
	tion (substitution method)			
	Homework 2 due; homework 3 assigned	Recitation:	Homework 3	
Th $9/15$	Master theorem (Ch. 4.5)			
, I	Use of master theorem to solve recurrences.	Recitation:	Homework 3	
Tu 9/20	More divide-and-conquer (Ch. 31.6 pages 956–957; 4.2)			
	Repeated squaring for exponentiation, Strassen's matrix multiplication.			
	Homework 3 due; homework 4 assigned; project 1 assigned Recitation: Homework 4			
Th $9/22$	Probability, random variables and expected values (
	Probability, random variables, expected values.	Recitation:	Homework 4	
Tu $9/27$	Randomized algorithms (Ch. 5.1–5.3)			
	Hiring problem; Expected runtime analysis.			
	Homework 4 due; homework 5 assigned	Recitation:	Homework 5	
Th $9/29$	Quicksort (Ch. 7.1–7.4)			
	Quicksort, best-case and worst-case runtimes, randomized q	-		
		Recitation:	Homework 5	
Tu 10/4	Sorting (Ch. 8.1, 8.2, 8.3)			
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, o			
	Homework 5 due; homework 6 assigned; project 1 due	Recitation: 1	Review Test 1	
Th $10/6$	Order statistics (Ch. 9)			
	Order statistics (find i -th smallest element); Randomized se			
	selection in linear time.	Recitation: 1	Review Test 1	
Tu 10/11	Test 1			
	Material until $9/27$ (inclusive)	Recitation:	Homework 6	
Th 10/13	Red-black trees (Ch. 13.1, 13.2, 13.3)			
,	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary			
		·	Homework 6	
Tu 10/18	B-trees (Ch. 18.1, 18.2)			
	k-ary search trees, B-tree def., height, insertion			
	Homework 6 due; homework 7 assigned; project 2 assigned	Recitation:	Homework 7	

Date	Material		
Th 10/20	Dynamic programming (Ch. $15.4, +$)		
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the		
	table. Recitation: Homework 7		
Tu 10/25	Dynamic programming (Ch. 15.3, 15.4., 16.2, +)		
	0-1 Knapsack; general outline of dynamic programming: Optimal substructure (re-		
	currence), overlapping subproblems, fill table bottom-up or by memoization.		
	Homework 7 due; homework 8 assigned Recitation: Homework 8		
Th 10/27	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402)		
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,		
	fractional knapsack. Recitation: Homework 8		
Tu 11/1	Elementary Graph Algorithms (Ch. 22.1–22.2)		
	Representations of graphs, breadth-first search (BFS)		
	Homework 8 due; homework 9 assigned Recitation: Homework 9		
Th $11/3$	Elementary Graph Algorithms (Ch. 22.3–22.4)		
	Depth-first search (DFS), topological sort; <i>Project 2 due</i> Recitation: Homework 9		
Tu 11/8	Review for Test 2		
	Review for test 2		
	Homework 9 due No recitation		
Th 11/10	Minimum Spanning Trees (Ch. 23)		
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)		
	Homework 10 assigned; project 3 assigned No recitation		
Tu 11/15	Test 2		
	Material from $9/29$ until $10/27$ (inclusive)		
	Recitation: Homework 10		
Th 11/17	Single-source shortest paths (Ch. 24 without 24.4)		
	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-		
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-		
	tion of negative-weight cycles; Shortest paths in a DAG. Recitation: Homework 10		
Tu 11/22	All-Pairs Shortest Paths (Ch. 25.2)		
	Dynamic programming: Floyd-Warshall		
	Homework 10 due; homework 11 assigned No recitation		
Th $11/24$	Thanksgiving		
	No class		
Tu 11/29	P and NP (Ch. 34)		
	Decision problems, definition of classes P and NP, polynomial-time reductions, NP-		
	hardness, NP-completeness; Show that problems are NP-complete by reducing from		
	other problems		
	Recitation: Homework 11		
Th 12/1	P and NP (Ch. 34)		
	TSP, Clique, Independent Set, Vertex Cover, Hamilton Path, Hamilton Circuit		
	Recitation: Homework 11		
Tu 12/6	Review for Final Exam		
	Review for final exam		
	Homework 11 due; project 3 due No recitation		

Chapter numbers refer to the CLRS book, 3rd edition.

"+" indicates additional material.

The comprehensive final exam will be on Thursday 12/15, 10:30 am -1 pm.