3. Homework
 Due $9 / 20 / 11$ before class

1. Recursive mystery (4 points)

```
int mystery(int n, int a){
    if (n==0)
        return 0;
    int tmp1 = mystery(n/2,a); // n/2 rounds down
    int tmp2 = 0;
    for(int i=1; i<=n/2; i++)
        tmp2 += a;
    if(n%2 = 1) return tmp1+tmp2+a;
    else return tmp1+tmp2;
}
```

(a) (1 point) What does the mystery method above compute?
(b) (2 points) Set up a runtime recurrence for the mystery method above. Do not forget the base case.
(c) (1 point) Is this mystery method a divide-and-conquer algorithm? Justify your answer shortly.
2. Recursion tree (8 points)

For the following recurrences use the recursion tree method to find a good guess of what they could solve to asymptotically (i.e., in big-Oh terms). Assume $T(1)=1$. You may need to use that $a^{\left(b^{c}\right)}=a^{b \cdot c}=a^{\left(c^{b}\right)}$.
(a) $T(n)=3 T\left(\frac{n}{3}\right)+n$ for $n \geq 2$
(b) $T(n)=4 T\left(\frac{n}{2}\right)+n^{3}$ for $n \geq 2$

3. Big-Oh Induction (4 points)

Use big-Oh-induction (= substitution method; including base case and inductive case) to prove that $T(n) \in O\left(n^{2}\right)$ where $T(1)=1$ and $T(n)=3 T(n / 2)+n^{2}$ for $n \geq 2$.

Practice Problems
 (Not required for homework credit.)

1. Induction

Prove by weak induction on n that the following equality holds for constant $a \neq 1$ and all $n \geq 0$:

$$
\sum_{i=0}^{n} a^{i}=\frac{a^{n+1}-1}{a-1}
$$

2. 3-way mergesort

```
int 3wayMergesort(int i, int j, int[] A){
    // Sort A[i..j]
    if(j-i<=1)
        return;
        l = (j-i)/3;
    3wayMergesort(i,i+l, A);
    3wayMergesort(i+l+1,i+2*l,A);
    3wayMergesort(i+2*l+1,j,A);
    merge(i,i+l+1,i+2*l+1); // Merges all three sub-arrays in linear time
}
```

The first call is 3 wayMergesort ($1, \mathrm{n}, \mathrm{A}$) to sort the array $A[1 . . n]$.
Set up a runtime recurrence $(T(n)=\ldots)$ for 3-way mergesort above. Do not forget the base case.

3. Recursion tree

For the recurrence

$$
T(n)=3 T\left(\frac{n}{2}\right)+n^{2} \quad \text { for } \quad n \geq 2
$$

use the recursion tree method to find a good guess of what it could solve to asymptotically (i.e., in big-Oh terms). Assume $T(1)=1$. You may need to use that $a^{\left(b^{c}\right)}=a^{b \cdot c}=a^{\left(c^{b}\right)}$.

4. Big-Oh Induction

Use big-Oh-induction (= substitution method; including base case and inductive case) to prove that $T(n) \in O(n \log n)$ where $T(1)=1$ and $T(n)=3 T(n / 3)+n$ for $n \geq 2$.

