CS 3343 Analysis of Algorithms — Fall 11
9/6/11

2. Homework
Due 9/13/11 before class

1. Big-Oh ranking (6 points)
Rank the following functions by order of growth, i.e., find an arrangement fi, fo, ...
of the functions satisfying f1 € O(f2), fo € O(f3),... . Partition your list into
equivalence classes such that f and g are in the same class if and only if f € O(g).

For every two functions f;, f; that are adjacent in your ordering, prove shortly why
fi € O(f;) holds. And if f and g are in the same class, prove that f € ©(g).

n?, logn, 2", /n, In, loglogn ,

Bear in mind that in some cases it might be useful to show f(n) € o(g(n)), since
o(g(n)) € O(g(n)). If you try to show that f(n) € o(g(n)), then it might be useful
to apply the rule of 'Hopital which states that

lim () = lim I'(n)

n—oo g(n) n—oo g'(n)

if the limits exist; where f/(n) and ¢’(n) are the derivatives of f and g, respectively.

2. Code snippet (3 points)

Give the ©-runtime depending on n for the code snippet below. Justify your
answer. Note that log is log, and is assumed to run in constant time.

for(i=1; log(i)<=n; i=i+1){
for(j=1; j<=n#*n; j=j+3){
for(k=1; k<=j; k++){
print(" ");

3. Heaps with links (7 points)

(a) (2 points) Consider storing a heap as a linked binary tree with pointers.
Please give pseudo-code on how you would store a heap node, and which
modifications you need to make to the heap routines that we discussed in
class. What are the runtimes of the heap routines?

(b) (2 points) Now consider storing a heap as a linked list with pointers. Please
give pseudo-code on how you would store a heap node, and which modifica-
tions you need to make to the heap routines that we discussed in class. What
are the runtimes of the heap routines?

(¢) (1 points) Which of the three heap implementations (array, linked tree, linked
list) is preferrable? Justify your answer.

(d) (2 points) Assume you are given two heaps of height h each, that are given
as linked binary trees. And assume we do not require that the last level of
the heap is “flushed left”, i.e., keys can be in any place in the last level. Give
an efficient algorithm that merges those two heaps into one heap (without
the “flushed left” condition). Analyze the runtime of your algorithm.



