
CS 3343 -- Fall 2010

B-trees
Carola Wenk

10/19/10 CS 3343 Analysis of Algorithms 1

External memory dictionaryy y

Task: Given a large amount of data that does not
fit into main memory, process it into a dictionary
data structure
• Need to minimize number of disk accesses
• With each disk read, read a whole block of data,
• Construct a balanced search tree that uses one
disk block per tree nodedisk block per tree node
• Each node needs to contain more than one key

10/19/10 CS 3343 Analysis of Algorithms 2

k-ary search treesy
A k-ary search tree T is defined as follows:
•For each node x of T:

• x has at most k children (i.e., T is a k-ary tree)(, y)
• x stores an ordered list of pointers to its children,
and an ordered list of keysy
• For every internal node: #keys = #children-1
• x fulfills the search tree property:• x fulfills the search tree property:
keys in subtree rooted at i-th child ≤ i-th key <
k i bt t d t (i+1) t hild

10/19/10 CS 3343 Analysis of Algorithms 3

keys in subtree rooted at (i+1)-st child

Example of a 4-ary treep y

10/19/10 CS 3343 Analysis of Algorithms 4

Example of a 4-ary search treep y

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

1
10/19/10 CS 3343 Analysis of Algorithms 5

1

B-tree

A B-tree T with minimum degree k ≥ 2 isA B-tree T with minimum degree k ≥ 2 is
defined as follows:

1 T is a (2k) ary search tree1. T is a (2k)-ary search tree
2. Every node, except the root, stores at least

k 1 keysk-1 keys
(every internal non-root node has at least k
children)children)

3. The root must store at least one key
4 All l h h d h

10/19/10 CS 3343 Analysis of Algorithms 6

4. All leaves have the same depth

B-tree with k=2

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

1. T is a (2k)-ary search tree

10/19/10 CS 3343 Analysis of Algorithms 7

() y

B-tree with k=2

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

2. Every node, except the root, stores at least

10/19/10 CS 3343 Analysis of Algorithms 8

k-1 keys

B-tree with k=2

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

3 The root must store at least one key
10/19/10 CS 3343 Analysis of Algorithms 9

3. The root must store at least one key

B-tree with k=2

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

4 All leaves have the same depth
10/19/10 CS 3343 Analysis of Algorithms 10

4. All leaves have the same depth

B-tree with k=2

10 25

6 12 15 21 30 45

2 7 8 11 14 20 23 24 27 40 502 7 8 11 14 20 23 24 27 40 50

R k Thi i (2 3 4) t
10/19/10 CS 3343 Analysis of Algorithms 11

Remark: This is a (2,3,4)-tree.

Height of a B-treeg

Theorem: For a B-tree with minimum degreeTheorem: For a B tree with minimum degree
k ≥ 2 which stores n keys has height h holds:

h ≤ logk (n+1)/2h ≤ ogk (n)/

Proof: #nodes ≥ 1+2+2k+2k2+…+2kh-1

level 0
level 1

level 2
level 3

n = #keys ≥ 1+(k-1)Σ2ki = 1+2(k-1)⋅ = 2kh-1
i=0

h-1 kh-1
k-1

10/19/10 CS 3343 Analysis of Algorithms 12

B-tree search
B-TREE-SEARCH(x,key)

i ← 1i ← 1
while i≤#keys of x and key > i-th key of x

do i ← i+1do i ← i+1
if i≤#keys of x and key = i-th key of x

then return (x i)then return (x,i)
if x is a leaf

then return NILthen return NIL
else b=DISK-READ(i-th child of x)

return B-TREE-SEARCH(b,key)

10/19/10 CS 3343 Analysis of Algorithms 13

return B TREE SEARCH(b,key)

B-tree search runtime

O(k) d• O(k) per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU timedisk accesses are more expensive than CPU time

10/19/10 CS 3343 Analysis of Algorithms 14

B-tree insert
• There are different insertion strategies. We just cover
one of themone of them
• Make one pass down the tree:

• The goal is to insert the new key into a leaf• The goal is to insert the new key into a leaf
• Search where key should be inserted
• Only descend into non full nodes:• Only descend into non-full nodes:

• If a node is full, split it. Then continue
descending.g
• Splitting of the root node is the only way a B-
tree grows in height

10/19/10 CS 3343 Analysis of Algorithms 15

B-TREE-SPLIT-CHILD(x,i,y)(, ,y)
• Split full node y into two nodes y and z of k-1 keys

has 2k-1 keys

• Median key S of y is moved up into y’s parent x
• Example below for k = 4

10/19/10 CS 3343 Analysis of Algorithms 16

Split root: B-TREE-SPLIT-CHILD(s,1,r)p
• The full root node r is split in two.
• A new root node s is created
• s contains the median key H of r and has the
two halves of r as children
E l b l f k 4• Example below for k = 4

10/19/10 CS 3343 Analysis of Algorithms 17

B-TREE-INSERT(T,key)(, y)

r = root[T]
if (# keys in r) = 2k-1 // root r is full

//insert new root node:
s ←ALLOCATE-NODE()
root[T] ← s
// split old root r to be two children of new root s
B-TREE-SPLIT-CHILD(s,1,r)
B T I N (k)B-TREE-INSERT-NONFULL(s,key)

else B-TREE-INSERT-NONFULL(r,key)

10/19/10 CS 3343 Analysis of Algorithms 18

B-TREE-INSERT-NONFULL(x,key)(y)
if x is a leaf then

insert key at the correct (sorted) position in xinsert key at the correct (sorted) position in x
DISK-WRITE(x)

elseelse
find child c of x which by the search tree property

should contain keyshould contain key
DISK-READ(c)
if c is full then // c contains 2k-1 keysif c is full then // c contains 2k 1 keys

B-TREE-SPLIT-CHILD(x,i,c)
c=child of x which should contain key

10/19/10 CS 3343 Analysis of Algorithms 19

y
B-TREE-INSERT-NONFULL(c,key)

Insert example (k=3)p ()

G M P X

A C D E J K N O R S T U V Y ZA C D E

• Insert B:
G M P X

A B C D E J K N O R S T U V Y Z

10/19/10 CS 3343 Analysis of Algorithms 20

Insert example (k=3) -- cont.p ()

G M P X

A B C D E J K N O R S T U V Y ZR S T U V

• Insert Q:
node is full

Q
G M P T X

A B C D E J K N O Y ZR S U VQ R S

10/19/10 CS 3343 Analysis of Algorithms 21

Insert example (k=3) -- cont.p ()
G M P T XG M P T Xnode is full

A B C D E J K N O Y ZQ R S U V

• Insert L:
P

G M T X

P

G M

A B C D E J K N O Y ZQ R S U V

G M T X

J K L

G M

10/19/10 CS 3343 Analysis of Algorithms 22

A B C D E J K N O Y ZQ R S U VJ K L

Insert example (k=3) -- cont.p ()
P

G M T Xnode is full

• Insert F:
A B C D E N O Y ZQ R S U VJ K LA B C D E

P

D E N O Y ZQ R S U V

C G M T X

J K LA B D E F
10/19/10 CS 3343 Analysis of Algorithms 23

D E N O Y ZQ R S U VJ K LA B D E F

Runtime of B-TREE-INSERT

O(k) ti d• O(k) runtime per node
• Path has height h = O(logk n)
• CPU-time: O(k logk n)

• Disk accesses: O(logk n)
disk accesses are more expensive than CPU timedisk accesses are more expensive than CPU time

10/19/10 CS 3343 Analysis of Algorithms 24

Deletion of an element

• Similar to insertion, but a bit more complicated;
see book for details

• If sibling nodes get not full enough, they are merged
into a single node

• Same complexity as insertion

10/19/10 CS 3343 Analysis of Algorithms 25

B-trees -- Conclusion
• B-trees are balanced 2k-ary search trees

• The degree of each node is bounded from
above and below using the parameter kg p

• All leaves are at the same height

• No rotations are needed: During insertion (or
deletion) the balance is maintained by node

litti (d i)splitting (or node merging)

• The tree grows (shrinks) in height only by

10/19/10 CS 3343 Analysis of Algorithms 26

g () g y y
splitting (or merging) the root

