

Dynamic Programming Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

10/21/10

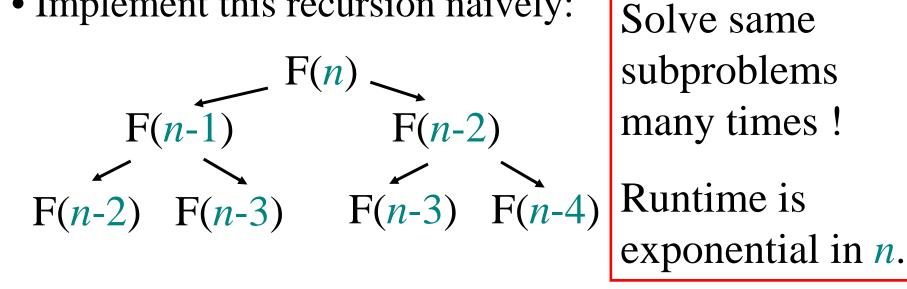
CS 3343 Analysis of Algorithms

Dynamic programming

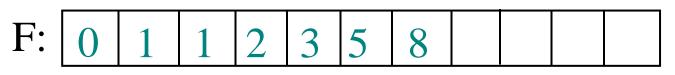
- Algorithm design technique
- A technique for solving problems that have
 - overlapping subproblems
 - and, when used for optimization, have an optimal substructure property
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

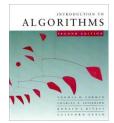
- F(0)=0; F(1)=1; F(n)=F(n-1)+F(n-2) for $n \ge 2$
- Implement this recursion naively:



• Store 1D DP-table and fill bottom-up in O(n) time:



10/21/10



Longest Common Subsequence

Example: Longest Common Subsequence (LCS) • Given two sequences $x[1 \dots m]$ and $y[1 \dots n]$, find a longest subsequence common to them both. "a" not "the" A functional notation, but not a function

Brute-force LCS algorithm

Check every subsequence of $x[1 \dots m]$ to see if it is also a subsequence of $y[1 \dots n]$.

Analysis

- 2^m subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential !

Towards a better algorithm

Two-Step Approach:

- 1. Look at the *length* of a longest-common subsequence.
- 2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by |s|.

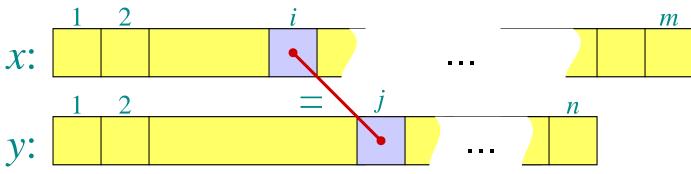
Strategy: Consider *prefixes* of *x* and *y*.

- Define c[i, j] = |LCS(x[1 ... i], y[1 ... j])|.
- Then, c[m, n] |LCS(x, y)|.

Recursive formulation

Theorem.

 $c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise.} \end{cases}$



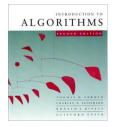
Let z[1 ldots k] = LCS(x[1 ldots i], y[1 ldots j]), where c[i, j] = k. Then, z[k] = x[i], or else z could be extended. Thus, z[1 ldots k-1] is CS of x[1 ldots i-1] and y[1 ldots j-1].

Proof (continued)

Claim: z[1 ... k-1] = LCS(x[1 ... i-1], y[1 ... j-1]). Suppose *w* is a longer CS of x[1 ... i-1] and y[1 ... j-1], that is, |w| > k-1. Then, *cut and paste*: $w \parallel z[k]$ (*w* concatenated with z[k]) is a common subsequence of x[1 ... i] and y[1 ... j] with $|w| \parallel z[k] \mid > k$. Contradiction, proving the claim.

Thus, c[i-1, j-1] = k-1, which implies that c[i, j] = c[i-1, j-1] + 1.

Other cases are similar.



Dynamic-programming hallmark #1

Optimal substructure An optimal solution to a problem (instance) contains optimal solutions to subproblems.

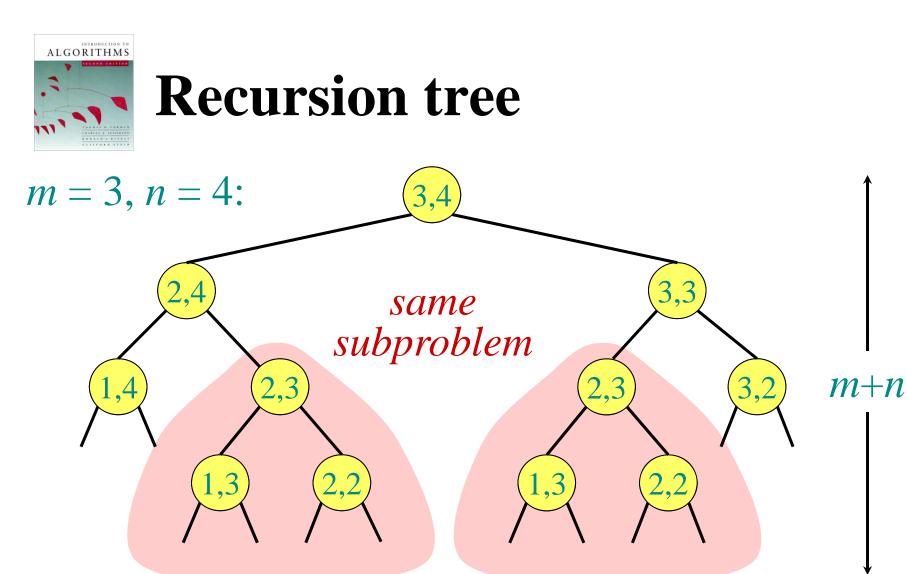
If z = LCS(x, y), then any prefix of z is an LCS of a prefix of x and a prefix of y.

CS 3343 Analysis of Algorithms

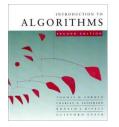
Recursive algorithm for LCS

LCS(x, y, i, j)if x[i] = y[j]then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$ else $c[i, j] \leftarrow max \{ LCS(x, y, i-1, j), LCS(x, y, i, j-1) \}$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.



Height = $m + n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!



Dynamic-programming hallmark #2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only mn.

Dynamic-programming

There are two variants of dynamic programming:

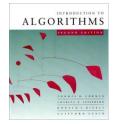
- 1. Memoization
- 2. Bottom-up dynamic programming (often referred to as "dynamic programming")

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.

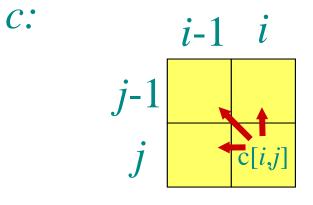
for all i, j: c[i,0]=0 and c[0, j]=0 LCS(x, y, i, j)if c[i, j] = NILthen if x[i] = y[j]then $c[i, j] \leftarrow LCS(x, y, i-1, j-1) + 1$ else $c[i, j] \leftarrow max \{LCS(x, y, i-1, j), LCS(x, y, i, j-1)\}$ same as before

Time = $\Theta(mn)$ = constant work per table entry. Space = $\Theta(mn)$.



Recursive formulation

$$c[i, j] = \begin{cases} c[i-1, j-1] + 1 & \text{if } x[i] = y[j], \\ \max\{c[i-1, j], c[i, j-1]\} & \text{otherwise.} \end{cases}$$



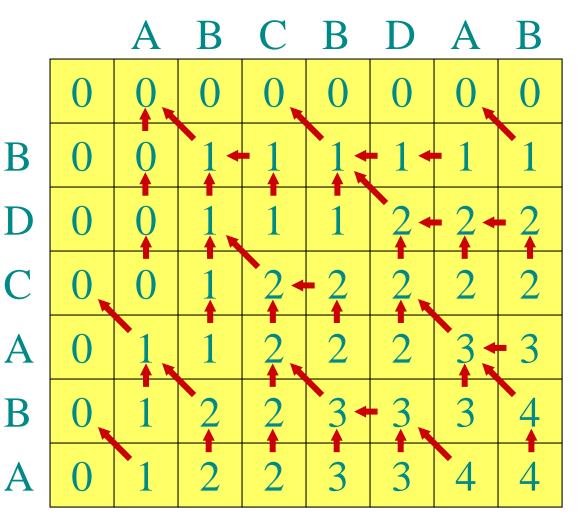


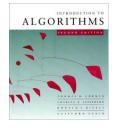
Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.





Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.

Time = $\Theta(mn)$.

Reconstruct LCS by backtracing.

Space = $\Theta(mn)$. Exercise: $O(\min\{m, n\})$.

10/21/10

