CS 3343 - Fall 2010

Dynamic Programming

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Dynamic programming

- Algorithm design technique
- A technique for solving problems that have
- overlapping subproblems
- and, when used for optimization, have an optimal substructure property
- Idea: Do not repeatedly solve the same subproblems, but solve them only once and store the solutions in a dynamic programming table

Example: Fibonacci numbers

- $F(0)=0 ; F(1)=1 ; F(n)=F(n-1)+F(n-2)$ for $n \geq 2$
- Implement this recursion naively:

Solve same subproblems many times !

Runtime is exponential in n.

- Store 1D DP-table and fill bottom-up in $O(n)$ time:

Longest Common Subsequence

Example: Longest Common Subsequence (LCS)

- Given two sequences $x[1 \ldots m]$ and $y[1 \ldots n]$, find a longest subsequence common to them both. "a" not "the"

Brute-force LCS algorithm

Check every subsequence of $x[1 \ldots m]$ to see if it is also a subsequence of $y[1 \ldots n]$.

Analysis

- 2^{m} subsequences of x (each bit-vector of length m determines a distinct subsequence of x).
- Hence, the runtime would be exponential !

Towards a better algorithm

Two-Step Approach:

1. Look at the length of a longest-common subsequence.
2. Extend the algorithm to find the LCS itself.

Notation: Denote the length of a sequence s by $|s|$.

Strategy: Consider prefixes of x and y.

- Define $c[i, j]=|\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])|$.
- Then, $c[m, n]=|\operatorname{LCS}(x, y)|$.

Recursive formulation

Theorem.

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j \\ \max \{c[i-1, j], c[i, j-1]\} & \text { otherwise } .\end{cases}
$$

Proof. Case $x[i]=y[j]$:

Let $z[1 \ldots k]=\operatorname{LCS}(x[1 \ldots i], y[1 \ldots j])$, where $c[i, j]$
$=k$. Then, $z[k]=x[i]$, or else z could be extended. Thus, $z[1 \ldots k-1]$ is CS of $x[1 \ldots i-1]$ and $y[1 \ldots j-1]$.

Proof (continued)

Claim: $z[1 \ldots k-1]=\operatorname{LCS}(x[1 \ldots i-1], y[1 \ldots j-1])$. Suppose w is a longer CS of $x[1 \ldots i-1]$ and $y[1 . j-1]$, that is, $|w|>k-1$. Then, cut and paste: $w \| z[k]$ (w concatenated with $z[k]$) is a common subsequence of $x[1 \ldots i]$ and $y[1 \ldots j]$ with $|w||z[k]|>k$. Contradiction, proving the claim.
Thus, $c[i-1, j-1]=k-1$, which implies that $c[i, j]$
$=c[i-1, j-1]+1$.
Other cases are similar. \square

Dynamic-programming hallmark \#1

If $z=\operatorname{LCS}(x, y)$, then any prefix of z is an LCS of a prefix of x and a prefix of y.

Recursive algorithm for LCS

$$
\begin{aligned}
& \operatorname{LCS}(x, y, i, j) \\
& \text { if } x[i]=y[j] \\
& \text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\
& \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\
& \operatorname{LCS}(x, y, i, j-1)\}
\end{aligned}
$$

Worst-case: $x[i] \neq y[j]$, in which case the algorithm evaluates two subproblems, each with only one parameter decremented.

Recursion tree

Height $=m+n \Rightarrow$ work potentially exponential, but we're solving subproblems already solved!

Dynamic-programming hallmark \#2

Overlapping subproblems A recursive solution contains a "small" number of distinct subproblems repeated many times.

The number of distinct LCS subproblems for two strings of lengths m and n is only $m n$.

Dynamic-programming

There are two variants of dynamic programming:

1. Memoization
2. Bottom-up dynamic programming (often referred to as "dynamic programming")

Memoization algorithm

Memoization: After computing a solution to a subproblem, store it in a table. Subsequent calls check the table to avoid redoing work.
for all i, j : $c[i, 0]=0$ and $c[0, j]=0$
$\operatorname{LCS}(x, y, i, j)$

$$
\text { if } c[i, j]=\text { NIL }
$$

then if $x[i]=y[j]$ $\left.\begin{array}{l}\text { then } c[i, j] \leftarrow \operatorname{LCS}(x, y, i-1, j-1)+1 \\ \text { else } c[i, j] \leftarrow \max \{\operatorname{LCS}(x, y, i-1, j), \\ \operatorname{LCS}(x, y, i, j-1)\}\end{array}\right\} \begin{aligned} & \text { same } \\ & \text { before }\end{aligned}$
Time $=\Theta(m n)=$ constant work per table entry.
Space $=\Theta(m n)$.

Recursive formulation

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j],\end{cases}
$$

C:

Bottom-up dynamicprogramming algorithm

IDEA:

Compute the table bottom-up.
Time $=\Theta(m n)$.

Bottom-up dynamicprogramming algorithm

Idea:

Compute the table bottom-up.
Time $=\Theta(m n)$.
Reconstruct LCS by backtracing.
Space $=\Theta(m n)$.
Exercise:
$O(\min \{m, n\})$.

