CS 3343 - Fall 2010

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Order statistics

Select the i th smallest of n elements (the element with rank i).

- $i=1$: minimum;
- $i=n$: maximum;
- $i=\lfloor(n+1) / 2\rfloor$ or $\lceil(n+1) / 2\rceil$: median.

Naive algorithm: Sort and index i th element. Worst-case running time $=\Theta(n \log n+1)$ $=\Theta(n \log n)$,
using merge sort or heapsort (not quicksort).

Randomized divide-andconquer algorithm

$\operatorname{Rand}-\operatorname{Select}(A, p, q, i) \quad$? i-th smallest of $A[p \ldots q]$
if $p=q$ then return $A[p]$
$r \leftarrow \operatorname{Rand}-\operatorname{Partition}(A, p, q)$
$k \leftarrow r-p+1$
? $k=\operatorname{rank}(A[r])$
if $i=k$ then return $A[r]$
if $i<k$
then return $\operatorname{Rand-Select}(A, p, r-1, i)$ else return $\operatorname{Rand}-\operatorname{Select}(A, r+1, q, i-k)$

Example

Select the $i=7$ th smallest:

Partition:

Select the $7-4=3$ rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.)
Lucky:

$$
\begin{aligned}
T(n) & =T(9 n / 10)+d n & & n^{\log _{10 / 9} 1}=n^{0}=1 \\
& =\Theta(n) & & \text { CASE } 3
\end{aligned}
$$

Unlucky:

$$
\begin{aligned}
T(n) & =T(n-1)+d n \\
& =\Theta\left(n^{2}\right)
\end{aligned}
$$

Worse than sorting!

Analysis of expected time

The analysis follows that of randomized quicksort, but it's a little different.
Let $T(n)=$ the random variable for the running time of Rand-Select on an input of size n, assuming random numbers are independent.
For $k=0,1, \ldots, n-1$, define the indicator random variable
$X_{k}=\left\{\begin{array}{l}1 \text { if Partition generates a } k: n-k-1 \text { split, }, ~\end{array}\right.$ 0 otherwise.

Analysis (continued)

To obtain an upper bound, assume that the i th element always falls in the larger side of the partition:

$$
\begin{aligned}
T(n)= & \left\{\begin{array}{cc}
T(\max \{0, n-1\})+d n & \text { if } 0: n-1 \text { split, } \\
T(\max \{1, n-2\})+d n & \text { if } 1: n-2 \text { split, } \\
\vdots & \text { if } n-1: 0 \text { split, } \\
T(\max \{n-1,0\})+d n & \\
& =\sum_{k=0}^{n-1} X_{k}(T(\max \{k, n-k-1\})+d n) \\
& \leq 2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} X_{k}(T(k)+d n)
\end{array} .\right.
\end{aligned}
$$

Calculating expectation

$$
E[T(n)]=E\left[2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} X_{k}(T(k)+d n)\right]
$$

Take expectations of both sides.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=[n / 2\rfloor}^{n-1} E\left[X_{k}(T(k)+d n)\right]
\end{aligned}
$$

Linearity of expectation.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[2 \sum_{k=n / 2 / 2]}^{n-1} X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=n / n / 2\rfloor}^{n-1} E\left[X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=n / n / 2\rfloor}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+d n]
\end{aligned}
$$

Independence of X_{k} from other random choices.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[2 \sum_{k=n / 2]}^{n-1} X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=n / 2]}^{n-1} E\left[X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=n / 2]}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+d n] \\
& =\frac{2}{n} \sum_{k=n / 2 / 2]}^{n-1} E[T(k)]+\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} d n
\end{aligned}
$$

Linearity of expectation; $E\left[X_{k}\right]=1 / n$.

Calculating expectation

$$
\begin{aligned}
E[T(n)] & =E\left[2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} E\left[X_{k}(T(k)+d n)\right] \\
& =2 \sum_{k=\lfloor n / 2\rfloor}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+d n] \\
& =\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} d n \\
& =\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+d n
\end{aligned}
$$

Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$
E[T(n)]=\frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} E[T(k)]+d n
$$

Prove: $E[T(n)] \leq c n$ for constant $c>0$.

- The constant c can be chosen large enough so that $E[T(n)] \leq c n$ for the base cases.
Use fact: $\sum_{k=\lfloor n / 2\rfloor}^{n-1} k \leq \frac{3}{8} n^{2} \quad$ (exercise).

Substitution method

$$
E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n / 2\rfloor}^{n-1} c k+d n
$$

Substitute inductive hypothesis.

Substitution method

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=[n / 2]}^{n-1} c k+d n \\
& \leq \frac{2 c}{n}\left(\frac{3}{8} n^{2}\right)+d n
\end{aligned}
$$

Use fact.

Substitution method

$$
\begin{aligned}
E[T(n)] & \leq \frac{2}{n} \sum_{k=[n / 2\rfloor}^{n-1} c k+d n \\
& \leq \frac{2 c}{n}\left(\frac{3}{8} n^{2}\right)+d n \\
& =c n-\left(\frac{c n}{4}-d n\right)
\end{aligned}
$$

Express as desired - residual.

Substitution method

$$
\begin{aligned}
& E[T(n)] \leq \frac{2}{n} \sum_{k=[n / 2\rfloor}^{n-1} c k+d n \\
& \leq \frac{2 c}{n}\left(\frac{3}{8} n^{2}\right)+d n \\
&=c n-\left(\frac{c n}{4}-d n\right) \\
& \leq c n, \\
& \text { if } c=4 d .
\end{aligned}
$$

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is very bad: $\Theta\left(n^{2}\right)$.
Q. Is there an algorithm that runs in linear time in the worst case?
A. Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

Idea: Generate a good pivot recursively.

ALGORITHMS
 Worst-case linear-time order statistics

$\operatorname{Select}(i, n)$

1. Divide the n elements into groups of 5. Find the median of each 5 -element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.
3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
4. if $i=k$ then return x elseif $i<k$
then recursively Select the i th smallest element in the lower part

Same as
Rand-
Select
else recursively Select the $(i-k)$ th smallest element in the upper part

Choosing the pivot

Choosing the pivot

1. Divide the n elements into groups of 5 .

Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser the median of each 5 -element group by rote.

Choosing the pivot

1. Divide the n elements into groups of 5. Find lesser the median of each 5 -element group by rote.
2. Recursively Select the median x of the $\lfloor n / 5\rfloor$ group medians to be the pivot.

greater

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$

$\Theta(n)\{1$. Divide the n elements into groups of 5 . Find the median of each 5-element group by rote. $T(n / 5)\left\{\begin{array}{l}\text { 2. Recursively Select the median } x \text { of the }\lfloor n / 5\rfloor\end{array}\right.$ group medians to be the pivot.
$\Theta(n) \quad$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
$T(?)\left\{\begin{array}{r}4 . \text { if } i=k \text { then return } x \\ \text { elseif } i<k \\ \text { then recursively Select the } i \text { th } \\ \begin{array}{l}\text { smallest element in the lower part }\end{array} \\ \text { else } \begin{array}{l}\text { recursively Select the }(i-k) \text { th } \\ \text { smallest element in the upper part }\end{array}\end{array}\right.$

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.
lesser

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.
lesser

greater

Analysis (Assume all elements are distinct.)

At least half the group medians are $\leq x$, which
lesser is at least $\lfloor\lfloor n / 5\rfloor / 2\rfloor=\lfloor n / 10\rfloor$ group medians.

- Therefore, at least $3\lfloor n / 10\rfloor$ elements are $\leq x$.

- Similarly, at least $3\lfloor n / 10\rfloor$ elements are $\geq x$. greater

Analysis (Assume all elements are distinct.)

Need "at most" for worst-case runtime

- At least $3\lfloor n / 10\rfloor$ elements are $\leq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\geq x$
- At least $3\lfloor n / 10\rfloor$ elements are $\geq x$ \Rightarrow at most $n-3\lfloor n / 10\rfloor$ elements are $\leq x$
- The recursive call to Select in Step 4 is executed recursively on $n-3 L n / 10$ 」elements.

Analysis (Assume all elements are distinct.)

- Use fact that $\lfloor a / b\rfloor \geq((a-(b-1)) / b \quad$ (page 51)
- $n-3\lfloor n / 10\rfloor \leq n-3 \cdot(n-9) / 10=(10 n-3 n+27) / 10$ $\leq 7 n / 10+3$
- The recursive call to Select in Step 4 is executed recursively on at most $7 n / 10+3$ elements.

Developing the recurrence

$T(n) \quad \operatorname{Select}(i, n)$

$\Theta(n)\left\{\begin{array}{l}1 \text {. Divide the } n \text { elements into groups of } 5 \text {. Find }\end{array}\right.$ the median of each 5-element group by rote. $T(n / 5)\left\{\begin{array}{l}2 \text {. Recursively Select the median } x \text { of the }\lfloor n / 5\rfloor\end{array}\right.$ group medians to be the pivot.
$\Theta(n) \quad$ 3. Partition around the pivot x. Let $k=\operatorname{rank}(x)$.
$T\left(7 n / 10\left\{\begin{array}{r}4 .\end{array}\left\{\begin{array}{r}\text { if } i=k \text { then return } x \\ \text { elseif } i<k \\ \text { then recursively Select the } i \text { th } \\ \text { smallest element in the lower part } \\ \text { else } \begin{array}{rl}\text { recursively SeLECT the }(i-k) \text { th } \\ \text { smallest element in the upper part }\end{array}\end{array}\right.\right.\right.$

Solving the recurrence

$$
T(n)=T\left(\frac{1}{5} n\right)+T\left(\frac{7}{10} n+3\right)+d n
$$

Substitution: $\quad T(n) \leq c\left(\frac{1}{5} n-3\right)+c\left(\frac{7}{10} n+3-3\right)+d n$ $T(n) \leq c(n-3)$

Technical trick. This

$$
\begin{aligned}
& \leq \frac{9}{10} c n-3 c+d n \\
& =c(n-3)-\frac{1}{10} c n+d n \\
& \leq c(n-3)
\end{aligned}
$$

if c is chosen large enough, e.g., $c=10 d$

Conclusions

- Since the work at each level of recursion is basically a constant fraction (9/10) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of n is large.
- The randomized algorithm is far more practical.

Exercise: Try to divide into groups of 3 or 7.

