

CS 3343 – Fall 2010

Order Statistics

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

CS 3343 Analysis of Algorithms

1

Order statistics

Select the *i*th smallest of *n* elements (the element with *rank i*).

- *i* = 1: *minimum*;
- *i* = *n*: *maximum*;
- $i = \lfloor (n+1)/2 \rfloor$ or $\lceil (n+1)/2 \rceil$: *median*.

Naive algorithm: Sort and index *i*th element. Worst-case running time = $\Theta(n \log n + 1)$ = $\Theta(n \log n)$, using merge sort or heapsort (*not* quicksort).

Randomized divide-andconquer algorithm

RAND-SELECT(A, p, q, i) ? *i*-th smallest of $A[p \dots q]$ **if** p = q **then return** A[p] $r \leftarrow \text{RAND-PARTITION}(A, p, q)$ $k \leftarrow r - p + 1$? k = rank(A[r]) **if** i = k **then return** A[r]**if** i < k

then return RAND-SELECT(A, p, r-1, i) else return RAND-SELECT(A, r + 1, q, i - k)

CS 3343 Analysis of Algorithms

Example

Select the i = 7th smallest:

Partition:

2 5 3 6 8 13 10 11
$$k = 4$$

Select the 7 – 4 = 3rd smallest recursively.

Intuition for analysis

(All our analyses today assume that all elements are distinct.) for RAND-PARTITION

Lucky: T(n) = T(9n/10) + dn $= \Theta(n)$

Unlucky: T(n) = T(n-1) + dn $= \Theta(n^2)$

arithmetic series

 $n^{\log_{10/9}1} = n^0 = 1$

CASE 3

Analysis of expected time

The analysis follows that of randomized quicksort, but it's a little different.

Let T(n) = the random variable for the running time of RAND-SELECT on an input of size n, assuming random numbers are independent.

For k = 0, 1, ..., n-1, define the *indicator random variable*

 $X_{k} = \begin{cases} 1 & \text{if PARTITION generates a } k : n-k-1 \text{ split,} \\ 0 & \text{otherwise.} \end{cases}$

Analysis (continued)

To obtain an upper bound, assume that the i th element always falls in the larger side of the partition:

$$T(n) = \begin{cases} T(\max\{0, n-1\}) + dn & \text{if } 0 : n-1 \text{ split,} \\ T(\max\{1, n-2\}) + dn & \text{if } 1 : n-2 \text{ split,} \\ \vdots \\ T(\max\{n-1, 0\}) + dn & \text{if } n-1 : 0 \text{ split,} \end{cases}$$
$$= \sum_{k=0}^{n-1} X_k (T(\max\{k, n-k-1\}) + dn) \\ \leq 2 \sum_{k=\lfloor n/2 \rfloor}^{n-1} X_k (T(k) + dn) \end{cases}$$

 $E[T(n)] = E\left[2\sum_{k=\lfloor n/2\rfloor}^{n-1} X_k(T(k) + dn)\right]$

Take expectations of both sides.

$$E[T(n)] = E\left[2\sum_{k=\lfloor n/2 \rfloor}^{n-1} X_k (T(k) + dn)\right]$$
$$= 2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E\left[X_k (T(k) + dn)\right]$$

Linearity of expectation.

$$E[T(n)] = E\left[2\sum_{k=\lfloor n/2 \rfloor}^{n-1} X_k (T(k) + dn)\right]$$
$$= 2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k (T(k) + dn)]$$
$$= 2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k] \cdot E[T(k) + dn]$$

Independence of X_k from other random choices.

$$E[T(n)] = E\left[2\sum_{k=\lfloor n/2 \rfloor}^{n-1} X_k (T(k) + dn)\right]$$

= $2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k (T(k) + dn)]$
= $2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k] \cdot E[T(k) + dn]$
= $\frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} dn$

Linearity of expectation; $E[X_k] = 1/n$.

$$E[T(n)] = E\left[2\sum_{k=\lfloor n/2 \rfloor}^{n-1} X_k (T(k) + dn)\right]$$

= $2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k (T(k) + dn)]$
= $2\sum_{k=\lfloor n/2 \rfloor}^{n-1} E[X_k] \cdot E[T(k) + dn]$
= $\frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} dn$
= $\frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + dn$

Hairy recurrence

(But not quite as hairy as the quicksort one.)

$$E[T(n)] = \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} E[T(k)] + dn$$

Prove: $E[T(n)] \leq cn$ for constant c > 0.

• The constant *c* can be chosen large enough so that $E[T(n)] \leq cn$ for the base cases.

$$\sum_{k=\lfloor n/2 \rfloor}^{n-1} k \leq \frac{3}{8}n^2 \quad \text{(exercise).}$$

Use fact:

$$E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + dn$$

Substitute inductive hypothesis.

$$E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + dn$$
$$\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + dn$$

Use fact.

$$E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + dn$$
$$\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + dn$$
$$= cn - \left(\frac{cn}{4} - dn\right)$$

Express as *desired – residual*.

$$E[T(n)] \leq \frac{2}{n} \sum_{k=\lfloor n/2 \rfloor}^{n-1} ck + dn$$
$$\leq \frac{2c}{n} \left(\frac{3}{8}n^2\right) + dn$$
$$= cn - \left(\frac{cn}{4} - dn\right)$$
$$\leq cn,$$

if c = 4d.

Summary of randomized order-statistic selection

- Works fast: linear expected time.
- Excellent algorithm in practice.
- But, the worst case is *very* bad: $\Theta(n^2)$.
- *Q*. Is there an algorithm that runs in linear time in the worst case?
- *A.* Yes, due to Blum, Floyd, Pratt, Rivest, and Tarjan [1973].

IDEA: Generate a good pivot recursively.

Worst-case linear-time order statistics

Select(i, n)

- 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.
- 2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.
- 3. Partition around the pivot x. Let $k = \operatorname{rank}(x)$.
- 4. if i = k then return x
 - elseif i < k

then recursively SELECT the *i*th smallest element in the lower part else recursively SELECT the (i-k)th smallest element in the upper part Same as RAND-SELECT

1. Divide the *n* elements into groups of 5.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote.

2. Recursively SELECT the median x of the $\lfloor n/5 \rfloor$ group medians to be the pivot.

CS 3343 Analysis of Algorithms

lesser

greater

Developing the recurrence

T(n) SELECT(i, n) $\Theta(n)$ { 1. Divide the *n* elements into groups of 5. Find the median of each 5-element group by rote. $T(n/5) \begin{cases} 2. \text{ Recursively SELECT the median } x \text{ of the } \lfloor n/5 \rfloor \\ \text{group medians to be the pivot.} \end{cases}$ $\Theta(n) \qquad 3. \text{ Partition around the pivot } x. \text{ Let } k = \operatorname{rank}(x). \end{cases}$ 4. if i = k then return x elseif i < k*T*(?) ┧ then recursively SELECT the ith smallest element in the lower else recursively SELECT the (i-k)th smallest element in the lower part

smallest element in the upper part

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

At least half the group medians are $\leq x$, which is at least $\lfloor \frac{n}{5} \rfloor / 2 \rfloor = \lfloor \frac{n}{10} \rfloor$ group medians. • Therefore, at least $3 \lfloor \frac{n}{10} \rfloor$ elements are $\leq x$.

lesser

At least half the group medians are $\leq x$, which is at least $\lfloor n/5 \rfloor / 2 \rfloor = \lfloor n/10 \rfloor$ group medians.

• Therefore, at least $3\lfloor n/10 \rfloor$ elements are $\leq x$.

• Similarly, at least $3 \lfloor n/10 \rfloor$ elements are $\geq x$.

CS 3343 Analysis of Algorithms

lesser

greater

Analysis (Assume all elements are distinct.)

Need "at most" for worst-case runtime

- At least $3 \lfloor n/10 \rfloor$ elements are $\leq x$ \Rightarrow at most $n-3 \lfloor n/10 \rfloor$ elements are $\geq x$
- At least $3 \lfloor n/10 \rfloor$ elements are $\geq x$ \Rightarrow at most $n-3 \lfloor n/10 \rfloor$ elements are $\leq x$
- The recursive call to SELECT in Step 4 is executed recursively on $n-3\lfloor n/10 \rfloor$ elements.

- Use fact that $\lfloor a/b \rfloor \ge ((a-(b-1))/b)$ (page 51)
- $n-3\lfloor n/10 \rfloor \le n-3 \cdot (n-9)/10 = (10n 3n + 27)/10 \le 7n/10 + 3$
- The recursive call to SELECT in Step 4 is executed recursively on at most 7n/10+3 elements.

Developing the recurrence

T(n) SELECT(i, n)

 $\Theta(n) \left\{ \begin{array}{l} 1. \text{ Divide the } n \text{ elements into groups of 5. Find} \\ \text{the median of each 5-element group by rote.} \end{array} \right.$ $T(n/5) \begin{cases} 2. \text{ Recursively SELECT the median } x \text{ of the } \lfloor n/5 \rfloor \\ \text{group medians to be the pivot.} \end{cases}$ $\Theta(n) \qquad 3. \text{ Partition around the pivot } x. \text{ Let } k = \operatorname{rank}(x). \end{cases}$

4. if i = k then return x elseif i < k*T*(7*n*/10 +3)

then recursively SELECT the *i*th smallest element in the lower else recursively SELECT the (i-k)th smallest element in the lower part smallest element in the upper part

if *c* is chosen large enough, e.g., c=10d

Conclusions

- Since the work at each level of recursion is basically a constant fraction (9/10) smaller, the work per level is a geometric series dominated by the linear work at the root.
- In practice, this algorithm runs slowly, because the constant in front of *n* is large.
- The randomized algorithm is far more practical.

Exercise: *Try to divide into groups of 3 or 7.*