CS 3343 - Fall 2010

More Divide \& Conquer Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Problem: Compute a^{n}, where $n \in \mathbf{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n)
\end{gathered}
$$

Fibonacci numbers

Recursive definition:

$$
F_{n}= \begin{cases}0 & \text { if } n=0 \\ 1 & \text { if } n=1 \\ F_{n-1}+F_{n-2} & \text { if } n \geq 2\end{cases}
$$

$\begin{array}{lllllllllll}0 & 1 & 1 & 2 & 3 & 5 & 8 & 13 & 21 & 34 & \cdots\end{array}$
Naive recursive algorithm: $\Omega\left(\phi^{n}\right)$ (exponential time), where $\phi=(1+\sqrt{5}) / 2$ is the golden ratio.

Computing Fibonacci

 numbersNaive recursive squaring:
$F_{n}=\phi^{n} / \sqrt{5}$ rounded to the nearest integer.

- Recursive squaring: $\Theta(\log n)$ time.
- This method is unreliable, since floating-point arithmetic is prone to round-off errors.

Bottom-up (one-dimensional dynamic programming):

- Compute $F_{0}, F_{1}, F_{2}, \ldots, F_{\mathrm{n}}$ in order, forming each number by summing the two previous.
- Running time: $\Theta(n)$.

Convex Hull

- Given a set of pins on a pinboard
- And a rubber band around them
- How does the rubber band look when it snaps tight?
- We represent convex hull as the
 sequence of points on the convex hull polygon, in counter-clockwise order.

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor\mathrm{n} / 2\rfloor$ points,
- \mathbb{B} contains the right $\lceil n / 2\rceil$ points
- Recursively compute the convex hull of \mathbf{A}
- Recursively compute the convex hull of \mathbb{B}
- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $O(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A

$b=$ leftmost point of B
while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do\{
while T not lower tangent to convex hull of A do \{ $a=a-1$
\}
while T not lower tangent to convex hull of B do \{ $b=b+1$

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets A and B :
- A contains the left $\lfloor\mathrm{n} / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
-Recursively compute the convex hull of A
-Recursively compute the convex hull of \mathbb{B}
- Merge the two convex hulls
$\mathrm{O}(\mathrm{n} \log \mathrm{n})$ just once $\mathrm{O}(1)$

Convex Hull: Runtime

- Runtime Recurrence:

$$
T(n)=2 T(n / 2)+c n
$$

Solves to $T(n)=\Theta(n \log n)$

Matrix multiplication

$\left.\begin{array}{l}\text { Input: } \quad A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
c_{11} & c_{12} & \cdots & c_{1 n} \\
c_{21} & c_{22} & \cdots & c_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n 1} & c_{n 2} & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
b_{11} & b_{12} & \cdots & b_{1 n} \\
b_{21} & b_{22} & \cdots & b_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n 1} & b_{n 2} & \cdots & b_{n n}
\end{array}\right]} \\
c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}
\end{gathered}
$$

Standard algorithm

for $i \leftarrow 1$ to n
do $\mathbf{f o r} j \leftarrow 1$ to n

$$
\begin{aligned}
& \text { do } c_{i j} \leftarrow 0 \\
& \quad \text { for } k \leftarrow 1 \text { to } n
\end{aligned}
$$

$$
\text { do } c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
$$

Running time $=\Theta\left(n^{3}\right)$

Divide-and-conquer algorithm

IDEA:

$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\begin{aligned}
{\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right] } & =\left[\begin{array}{l:l}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right] \\
C & =A \cdot B
\end{aligned}
$$

$\left.\begin{array}{l}r=a \cdot e+b \cdot g \\ s=a \cdot f+b \cdot h\end{array}\right\} 8$ recursive mults of $(n / 2) \times(n / 2)$ submatrices
$t=c \cdot e+d \cdot g\} 4$ adds of $(n / 2) \times(n / 2)$ submatrices
$u=c \cdot f+d \cdot h]$

Analysis of D\&C algorithm

$n^{\log _{b} a}=n^{\log _{2} 8}=n^{3} \Rightarrow$ CASE $1 \Rightarrow T(n)=\Theta\left(n^{3}\right)$.
No better than the ordinary algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
& r=P_{5}+P_{4}-P_{2}+P_{6} \\
& s=P_{1}+P_{2} \\
& t=P_{3}+P_{4} \\
& u=P_{5}+P_{1}-P_{3}-P_{7}
\end{aligned}
$$

7 mults, 18 adds/subs.
Note: No reliance on commutativity of mult!

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.

$$
\begin{aligned}
& P_{1}=a \cdot(f-h) \\
& P_{2}=(a+b) \cdot h \\
& P_{3}=(c+d) \cdot e \\
& P_{4}=d \cdot(g-e) \\
& P_{5}=(a+d) \cdot(e+h) \\
& P_{6}=(b-d) \cdot(g+h) \\
& P_{7}=(a-c) \cdot(e+f)
\end{aligned}
$$

$$
\begin{aligned}
r= & P_{5}+P_{4}-P_{2}+P_{6} \\
= & (a+d)(e+h) \\
& +d(g-e)-(a+b) h \\
& +(b-d)(g+h) \\
= & a e+a h+d e+d h \\
& +d g-d e-a h-b h \\
& +b g+b h-d g-d h \\
= & a e+b g
\end{aligned}
$$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form P-terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

$n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow$ CASE $1 \Rightarrow T(n)=\Theta\left(n^{\log 7}\right)$.
The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \cdots}\right)$.

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method (so practice this math).
- Can lead to more efficient algorithms

