8/23/10

Schedule (subject to change)

Date	Material
Th 8/26	Analyzing algorithms (Ch. 2.2)
,	Best case and worst case runtimes; insertion sort, incremental algorithm
Tu 8/31	Asymptotic notation (Ch. 3, Ch. A)
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets
	Homework 1 assigned Recitation: Homework 1
Th $9/2$	Asymptotic notation (Ch. 3, Ch. A)
	O, Ω, Θ, o , limit-theorem; runtime for code-snippets
Tu 9/7	Heapsort (Ch. 6)
	Abstract data types (ADT), priority queue, heap, heapsort, linear-time buildheap
	Homework 1 due; homework 2 assigned Recitation: Homework 2
Th 9/9	Recursion trees and induction (+)
	Recursive algorithms. Guess solution of recurrence using recursion trees and prove
	the correctness of the solution using induction.
Tu 9/14	Divide-and-conquer (Ch. 2.3) and recurrences (Ch. 4.3, 4.4)
	Divide-and-conquer, merge sort, binary search; Runtime recurrences. Big-Oh induc-
	tion (substitution method)
	Homework 2 due; homework 3 assigned Recitation: Homework 3
Th $9/16$	Master theorem (Ch. 4.5)
	Use of master theorem to solve recurrences.
Tu 9/21	More divide-and-conquer (Ch. 31.6 pages 956–957; 4.2)
	Repeated squaring for exponentiation, Strassen's matrix multiplication.
	Homework 3 due; homework 4 assigned; project 1 assigned
	Recitation: Homework 4
Th $9/23$	Probability, random variables and expected values (Ch. C.2, C.3)
	Probability, random variables, expected values.
Tu 9/28	Randomized algorithms (Ch. 5.1–5.3)
	Hiring problem; Expected runtime analysis.
	Homework 4 due Recitation: Review test 1
Th $9/30$	Test 1
	Material until 9/21 (inclusive)
Tu 10/5	Quicksort (Ch. 7.1–7.4)
	Quicksort, best-case and worst-case runtimes, randomized quicksort.
	Homework 5 assigned Recitation: Homework 5
Th $10/7$	Sorting (Ch. 8.1, 8.2, 8.3)
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
Tu 10/12	Sorting (Ch. 8.1, 8.2, 8.3)
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort, radix sort
	Homework 5 due; homework 6 assigned Recitation: Homework 6
Th 10/14	Order statistics (Ch. 9)
	Order statistics (find i -th smallest element); Randomized selection, deterministic
	selection in linear time
Tu 10/19	Red-black trees (Ch. 13.1, 13.2, 13.3)
	Red-black tree property, rotations, insertion; abstract data types, ADT dictionary
	Homework 6 due; homework 7 assigned Recitation: Homework 7

Date	Material
Th 10/21	Dynamic programming (Ch. 15.4, +)
	Fibonacci, binomial coefficient, LCS: fill table, then construct solution from the
	table.
Tu 10/26	Dynamic programming (Ch. 15.3, 15.4., $16.2, +$)
	0-1 Knapsack; general outline of dynamic programming: Optimal substructure (re-
	currence), overlapping subproblems, fill table bottom-up or by memoization.
	Homework 7 due; homework 8 assigned; project 1 due Recitation: Homework 8
Th $10/28$	Greedy algorithms (Ch. 16.2, problem 16-1 on page 402)
	Greedy algorithms (greedy-choice property, optimal substructure). Making change,
T- 11/9	fractional knapsack.
Tu 11/2	Elementary Graph Algorithms (Ch. 22.1–22.2)
	Representations of graphs, breadth-first search (BFS) Homework 8 due; project 2 assigned Recitation: Review test 2
Th $11/4$	Test 2 Motorial from $0/22$ until $10/26$ (inclusive)
	Material from 9/23 until 10/26 (inclusive)
Tu 11/9	Elementary Graph Algorithms (Ch. 22.3–22.4)
	Depth-first search (DFS), topological sort
Th 11/11	Homework 9 assignedRecitation: Homework 9Minimum Spanning Trees (Ch. 23)
	Prim (grows single tree), Kruskal (grows forest; uses union/find data structure)
Tu 11/16	Single-source shortest paths (Ch. 24 without 24.4)
14 11/10	Optimal substructure, triangle inequality, relaxation step; Dijkstra (only for non-
	negative edge weights), predecessor tree (shortest path tree); Bellman-Ford, detec-
	tion of negative-weight cycles; Shortest paths in a DAG
	Homework 9 due; homework 10 assigned Recitation: Homework 10
Th 11/18	All-Pairs Shortest Paths (Ch. 25.2)
	Dynamic programming: Floyd-Warshall
	Online teaching evaluations, first day
Tu 11/23	P and NP (Ch. 34)
	Decision problems, definition of classes P and NP, polynomial-time reductions, NP-
	hardness, NP-completeness; Show that problems are NP-complete by reducing from
	other problems
	Homework 10 due; homework 11 assigned Recitation: Homework 11
Th $11/25$	Thanksgiving
	No class
Tu 11/30	P and NP (Ch. 34)
	TSP, Clique, Independent Set, Vertex Cover, Hamilton Path, Hamilton Circuit
	Recitation: Review final exam
We 12/1	Drop deadline to drop with a 'W'
Th $12/2$	Review for Final Exam
	Review for final exam
0 10/5	Homework 11 due; project 2 due
Su 12/5	Online teaching evaluations, last day

Chapter numbers refer to the CLRS book, 3rd edition. "+" indicates additional material.

The comprehensive final exam will be on Thursday 12/9, 10:30 am -1 pm.