4. Homework
 Due 9/28/10 before class

1. Master theorem ($\mathbf{1 0}$ points)

Use the master theorem to solve the following recurrences. Justify your results. Assume that $T(1)=1$.
(a) $T(n)=3 T\left(\frac{n}{3}\right)+3$
(b) $T(n)=64 T\left(\frac{n}{2}\right)+n^{6} \log ^{2} n$
(c) $T(n)=27 T\left(\frac{n}{3}\right)+n \log n$
(d) $T(n)=T\left(\frac{n}{2}\right)+\sqrt{n}$
(e) $T(n)=64 T\left(\frac{n}{4}\right)+n^{3}$

2. Multiplying polynomials (10 points)

A polynomial of degree n is a function

$$
p(x)=\sum_{i=0}^{n} a_{i} \cdot x^{i}=a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\cdots+a_{1} \cdot x+a_{0}
$$

where a_{i} are constants and $a_{n} \neq 0$. For example, $4 \cdot x^{3}+5 \cdot x^{2}+2 \cdot x+1$ is a polynomial of degree 3 . For simplicity you may assume that $n+1$ is a power of 2 .
(a) (1 point) What is the runtime of the straight-forward algorithm for multiplying two polynomials of degree n ?
(b) (5 points) We can rewrite the polynomial $a_{n} \cdot x^{n}+a_{n-1} \cdot x^{n-1}+\cdots+a_{1} \cdot x+a_{0}$ as $x^{(n+1) / 2}\left(a_{n} \cdot x^{(n-1) / 2}+a_{n-1} \cdot x^{(n-1) / 2-1}+\cdots+a_{(n-1) / 2+2} \cdot x+a_{(n-1) / 2+1}\right)+$ $\left(a_{(n-1) / 2} \cdot x^{n / 2-1}+\cdots+a_{1} \cdot x+a_{0}\right)$. This effectively divides the polynomials into two parts of half the size each. For example, $4 \cdot x^{3}+5 \cdot x^{2}+2 \cdot x+1$ can be rewritten as $x^{2}(4 \cdot x+5)+(2 \cdot x+1)$. And $7 \cdot x^{7}+6 \cdot x^{6}+5 \cdot x^{5}+4 \cdot x^{4}+3 \cdot x^{3}+2 \cdot x^{2}+$ $1 \cdot x+9$ can be rewritten as $x^{4}\left(7 \cdot x^{3}+6 \cdot x^{2}+5 \cdot x+4\right)+\left(3 \cdot x^{3}+2 \cdot x^{2}+1 \cdot x+9\right)$; here $n=7$.
Use this as a starting point to design a divide-and-conquer algorithm for multiplying two degree- n polynomials (recurse on polynomials of degree ($n-$ $1) / 2$). Give a runtime analysis of your algorithm by setting up and solving a recurrence. The runtime of your algorithm should be the same as the runtime of part a).
(c) (1 point) Show how to multiply two degree-1 polynomials $a \cdot x+b$ and $c \cdot x+d$ using only three multiplications. Hint: One of the multiplications is $(a+b)$. $(c+d)$.
(d) (3 points) Design a divide-and-conquer algorithm for multiplying two polynomials of degree n in time $\Theta\left(n^{\log _{2} 3}\right)$. Hint: Reuse part b) and speed it up with the knowledge of part \mathbf{c})

