
CS 3343 Analysis of Algorithms – Fall 10

9/14/10

3. Homework
Due 9/21/10 before class

1. Induction (3 points)
Let T (0) = 1 and T (n) = 2 T (n − 1) + 1 be a runtime recurrence. Prove using
induction on n that T (n) = 2n+1 − 1.

2. Recursive mystery (6 points)

int mystery(int[] A, int i, int j){
if(i>=j)
return A[i];

int a = mystery(A, i+1,j);
int b = mystery(A, i, j-1);
return a*b;

}

(a) (2 points) Set up a runtime recurrence for the mystery method above. Do not
forget the base case. Assume the initial call is mystery(A, 1, n) where n is
the length of array A. Shortly argue why your recurrence correctly specifies
the runtime.

(b) (1 point) Is this mystery method a divide-and-conquer algorithm? Justify
your answer shortly.

(c) (3 points) Using the recursion tree method, come up with a guess what this
runtime recurrence will solve to. Your guess should be expressed as a simple
runtime function in Θ-notation (such as Θ(n log n), Θ(n2), ...)?

3. Divide and Conquer (8 points)
Let A[1..n] be a sorted array of n distinct numbers that represent n points on a
line. The task is to find the distance between the two closest points. For example,
if A = [1, 6, 10, 13, 19, 20, 23] then 6− 1 = 5, 10− 6 = 4, 13− 10 = 3, 19− 13 = 6,
20 − 19 = 1, 23 − 20 = 3, and hence 1 is the smallest distance which is attained
between 19 and 20.

While it is pretty straight-forward to develop an O(n)-time algorithm for this task,
in this exercise you should develop on O(n)-time divide-and-conquer algorithm.

(a) (3 points) Give an O(n)-time divide-and-conquer algorithm to solve this
task.

(b) (2 points) Derive the runtime recurrence for your algorithm (do not forget the
base case.) Shortly argue why your recurrence correctly specifies the runtime.

(c) (3 points) Use the recursion tree method to argue why your runtime recur-
rence solves to O(n); you do not need to do a big-Oh induction.

Flip over to back page =⇒



4. Guessing and Induction (6 points)

For the following recurrence use the recursion tree method to find a good guess of
what it could solve to. Make your guess as tight as possible. Then prove that T (n)
is in big-Oh of your guess by big-Oh-induction (= substitution method; including
base case and inductive case).

T (1) = 1

T (n) = 4T (n
3 ) + n2 for n ≥ 2.


