Divide-and-conquer algorithm

IDEA:
$n \times n$ matrix $=2 \times 2$ matrix of $(n / 2) \times(n / 2)$ submatrices:

$$
\left[\begin{array}{c:c}
r & s \\
\hdashline t & u
\end{array}\right]=\left[\begin{array}{c:c}
a & b \\
\hdashline c & d
\end{array}\right] \cdot\left[\begin{array}{c:c}
e & f \\
\hdashline g & h
\end{array}\right]
$$

Standard algorithm

Powering a number

Problem: Compute a^{n}, where $n \in \boldsymbol{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)
$a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\ a^{(n-1) 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd. }\end{cases}$

$$
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n) .
$$

Matrix multiplication

$\left.\begin{array}{ll}\text { Input: } & A=\left[a_{i j}\right], B=\left[b_{i j}\right] . \\ \text { Output: } & C=\left[c_{i j}\right]=A \cdot B .\end{array}\right\} \quad i, j=1,2, \ldots, n$.
$\left[\begin{array}{rrrr}c_{11} & c_{12} & \Lambda & c_{1 n} \\ c_{21} & c_{22} & \Lambda & c_{2 n} \\ \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\ c_{n 1} & c_{n 2} & \Lambda & c_{n n}\end{array}\right]=\left[\begin{array}{rrrr}a_{11} & a_{12} & \Lambda & a_{1 n} \\ a_{21} & a_{22} & \Lambda & a_{2 n} \\ \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\ a_{n 1} & a_{n 2} & \Lambda & a_{n n}\end{array}\right] \cdot\left[\begin{array}{cccc}b_{11} & b_{12} & \Lambda & b_{1 n} \\ b_{21} & b_{22} & \Lambda & b_{2 n} \\ \mathrm{M} & \mathrm{M} & \mathrm{O} & \mathrm{M} \\ b_{n 1} & b_{n 2} & \Lambda & b_{n n}\end{array}\right]$
$c_{i j}=\sum_{k=1}^{n} a_{i k} \cdot b_{k j}$

9/20/07
CS 3343 Analysis of Algorithms

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } n \\
& \text { do for } j \leftarrow 1 \text { to } n \\
& \quad \text { do } c_{i j} \leftarrow 0 \\
& \quad \text { for } k \leftarrow 1 \text { to } n \\
& \quad \text { do } c_{i j} \leftarrow c_{i j}+a_{i k} \cdot b_{k j}
\end{aligned}
$$

$$
\text { Running time }=\Theta\left(n^{3}\right)
$$唍

Analysis of D\&C algorithm

No better than the ordinary algorithm.

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.
$P_{1}=a \cdot(f-h)$
$r=P_{5}+P_{4}-P_{2}+P_{6}$
$P_{2}=(a+b) \cdot h$
$s=P_{1}+P_{2}$
$P_{3}=(c+d) \cdot e$
$t=P_{3}+P_{4}$
$P_{4}=d \cdot(g-e)$
$u=P_{5}+P_{1}-P_{3}-P_{7}$
$P_{5}=(a+d) \cdot(e+h)$
$P_{6}=(b-d) \cdot(g+h)$
7 mults, 18 adds/subs. Note: No reliance on commutativity of mult!
$P_{7}=(a-c) \cdot(e+f)$

Strassen's idea

- Multiply 2×2 matrices with only 7 recursive mults.
$P_{1}=a \cdot(f-h) \quad s=P_{1}+P_{2}$
$P_{2}=(a+b) \cdot h \quad=a \cdot(f-h)+(a+b) \cdot h$
$P_{3}=(c+d) \cdot e \quad=a f-a h+a h+b h$
$P_{4}=d \cdot(g-e) \quad=a f+b h$
$P_{5}=(a+d) \cdot(e+h)$
$P_{6}=(b-d) \cdot(g+h)$
$P_{7}=(a-c) \cdot(e+f)$

Strassen's algorithm

1. Divide: Partition A and B into $(n / 2) \times(n / 2)$ submatrices. Form P-terms to be multiplied using + and - .
2. Conquer: Perform 7 multiplications of $(n / 2) \times(n / 2)$ submatrices recursively.
3. Combine: Form C using + and - on $(n / 2) \times(n / 2)$ submatrices.

$$
T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)
$$

Analysis of Strassen
$T(n)=7 T(n / 2)+\Theta\left(n^{2}\right)$
$n^{\log _{b} a}=n^{\log _{2} 7} \approx n^{2.81} \Rightarrow$ CASE $1 \Rightarrow T(n)=\Theta\left(n^{\log 7}\right)$.
The number 2.81 may not seem much smaller than 3 , but because the difference is in the exponent, the impact on running time is significant. In fact, Strassen's algorithm beats the ordinary algorithm on today's machines for $n \geq 30$ or so.

Best to date (of theoretical interest only): $\Theta\left(n^{2.376 \Lambda}\right)$.

