
1

9/20/07 CS 3343 Analysis of Algorithms 1

CS 3343 -- Fall 2007

Matrix Multiplication
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk

9/20/07 CS 3343 Analysis of Algorithms 2

Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 

Naive algorithm: Θ(n).

9/20/07 CS 3343 Analysis of Algorithms 3

Matrix multiplication



















⋅



















=



















nnnn

n

n

nnnn

n

n

nnnn

n

n

bbb

bbb
bbb

aaa

aaa
aaa

ccc

ccc
ccc

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

Λ
ΜΟΜΜ

Λ
Λ

21

22221

11211

21

22221

11211

21

22221

11211

∑
=

⋅=
n

k
kjikij bac

1

Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.

9/20/07 CS 3343 Analysis of Algorithms 4

Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)

9/20/07 CS 3343 Analysis of Algorithms 5

Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:






⋅




=





hg
fe

dc
ba

ut
sr

C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·h
u = c·f +d·g

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices

9/20/07 CS 3343 Analysis of Algorithms 6

Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)



2

9/20/07 CS 3343 Analysis of Algorithms 7

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7

9/20/07 CS 3343 Analysis of Algorithms 8

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

s = P1 + P2
= a ⋅ (f – h) + (a + b) ⋅h
= af – ah + ah + bh
= af + bh

9/20/07 CS 3343 Analysis of Algorithms 9

Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)

9/20/07 CS 3343 Analysis of Algorithms 10

Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376Λ).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 30 or so.


