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CS 3343 -- Fall 2007

Matrix Multiplication
Carola Wenk

Slides courtesy of Charles Leiserson with small 
changes by Carola Wenk
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Powering a number

Problem: Compute a n, where n ∈ N.

a n =
a n/2 ⋅ a n/2 if n is even;
a (n–1)/2 ⋅ a (n–1)/2 ⋅ a if n is odd.

Divide-and-conquer algorithm: (recursive squaring)

T(n) = T(n/2) + Θ(1)  ⇒ T(n) = Θ(log n) . 

Naive algorithm: Θ(n).
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Matrix multiplication
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Input: A = [aij], B = [bij].
Output: C = [cij] = A⋅B. i, j = 1, 2,… , n.
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Standard algorithm

for i ← 1 to n
do for j ← 1 to n

do cij ← 0
for k ← 1 to n

do cij ← cij + aik⋅ bkj

Running time = Θ(n3)
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Divide-and-conquer algorithm

n×n matrix = 2×2 matrix of (n/2)×(n/2) submatrices:
IDEA:
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C = A ⋅ B
r = a·e+b·g
s = a·f+ b·h
t = c·e+d·h
u = c·f +d·g

8 recursive mults of (n/2)×(n/2) submatrices
4 adds of (n/2)×(n/2) submatrices
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Analysis of D&C algorithm

nlogba = nlog28 = n3 ⇒ CASE 1 ⇒ T(n) = Θ(n3). 

No better than the ordinary algorithm.

# submatrices
submatrix size

work adding 
submatrices

T(n) = 8 T(n/2) + Θ(n2)
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7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

7 mults, 18 adds/subs.
Note: No reliance on 
commutativity of mult!

Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

r = P5 + P4 – P2 + P6
s = P1 + P2
t = P3 + P4
u = P5 + P1 – P3 – P7
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Strassen’s idea
• Multiply 2×2 matrices with only 7 recursive mults. 

P1 = a ⋅ ( f – h)
P2 = (a + b) ⋅ h
P3 = (c + d) ⋅ e
P4 = d ⋅ (g – e)
P5 = (a + d) ⋅ (e + h)
P6 = (b – d) ⋅ (g + h)
P7 = (a – c) ⋅ (e + f )

s = P1 + P2
= a ⋅ (f – h) + (a + b) ⋅h
= af – ah + ah + bh
= af + bh
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Strassen’s algorithm
1. Divide: Partition A and B into 

(n/2)×(n/2) submatrices.  Form P-terms 
to be multiplied using + and – .

2. Conquer: Perform 7 multiplications of 
(n/2)×(n/2) submatrices recursively.

3. Combine: Form C using + and – on 
(n/2)×(n/2) submatrices.

T(n) = 7 T(n/2) + Θ(n2)
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Analysis of Strassen
T(n) = 7 T(n/2) + Θ(n2)

nlogba = nlog27 ≈ n2.81 ⇒ CASE 1 ⇒ T(n) = Θ(nlog 7).

Best to date (of theoretical interest only): Θ(n2.376Λ).

The number 2.81 may not seem much smaller than 
3, but because the difference is in the exponent, the 
impact on running time is significant.  In fact, 
Strassen’s algorithm beats the ordinary algorithm 
on today’s machines for n ≥ 30 or so.


