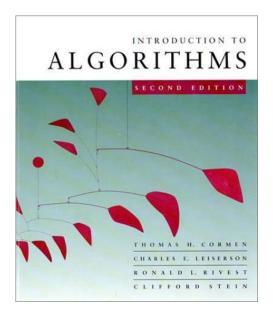


CS 33433 – Fall 2007



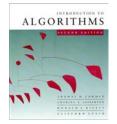
Topological Sort Carola Wenk

CS 3343 Analysis of Algorithms



Paths, Cycles, Connectivity

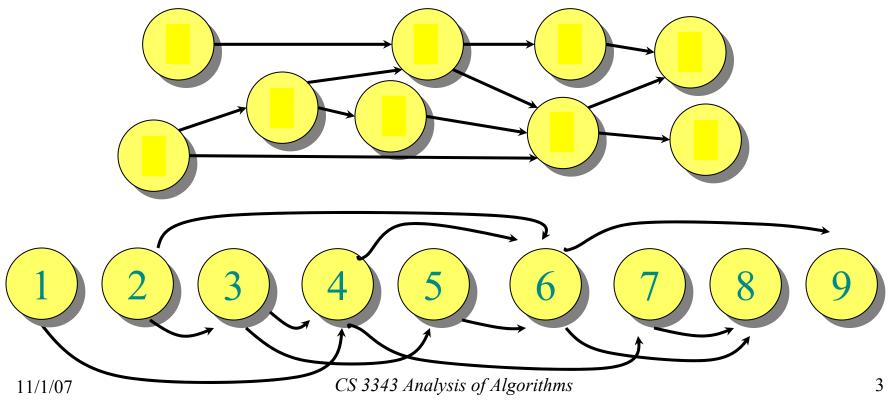
- Let G=(V,E) be a directed (or undirected) graph
- A path from v_1 to v_k in *G* is a sequence of vertices v_1, v_2, \dots, v_k such that $(v_i, v_{\{i+1\}}) \in E$ (or $\{v_i, v_{\{i+1\}}\} \in E$ if *G* is undirected) for all $i \in \{1, \dots, k-1\}$.
- A path is simple if all vertices in the path are distinct.
- A path v_1, v_2, \dots, v_k forms a **cycle** if $v_1 = v_k$ and $k \ge 2$.
- A graph with no cycles is **acyclic**.
 - An undirected acyclic graph is called a **tree**. (Trees do not have to have a root vertex specified.)
 - A directed acyclic graph is a **DAG**. (A DAG can have undirected cycles if the direction of the edges is not considered.)
- An undirected graph is connected if every pair of vertices is connected by a path. A directed graph is strongly connected if for every pair *u*,*v*∈*V* there is a path from *u* to *v* and there is a path from *v* to *u*.
- The (strongly) connected components of a graph are the equivalence classes of vertices under this reachability relation.
 11/1/07 CS 3343 Analysis of Algorithms 2



Topological Sort

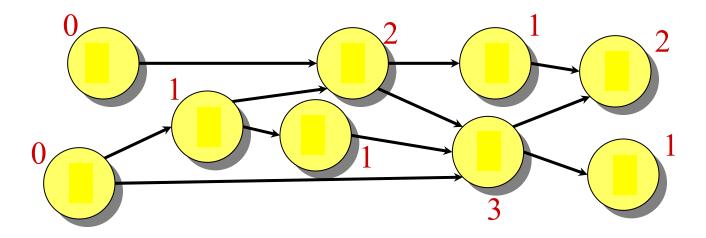
Topologically sort the vertices of a *directed acyclic graph* (*DAG*):

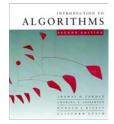
• Determine $f: V \to \{1, 2, ..., |V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u) \le f(v)$.



Topological Sort Algorithm

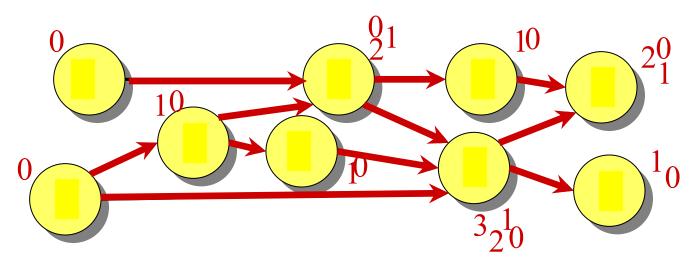
- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1





Topological Sort Algorithm

- Store vertices in a priority min-queue, with the in-degree of the vertex as the key
- While queue is not empty
 - Extract minimum vertex v, and give it next number
 - Decrease keys of all adjacent vertices by 1



Topological Sort Runtime

Runtime:

- O(|V|) to build heap + O(|E|) DECREASE-KEY ops
- \Rightarrow O(|V| + |E| log |V|) with a binary heap
- \Rightarrow O(|V| + |E|) with a Fibonacci heap



Depth-First Search revisited

DFS(G=(V,E))

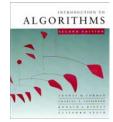
Mark all vertices in *G* as "unvisited" time=0;

for each vertex $v \in V$ do

if v is unvisited

DFS_rec(G,v)

DFS_rec(G, v)
visit v;
d[v]=++time; //discover time
for each w adjacent to v do
 if w is unvisited
 Add edge (v,w) to tree T
 DFS_rec(G,w)
f[v]=++time; //finish time



DFS Edge Classification

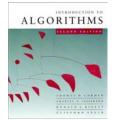
- Edge (*u*,*v*) in depth-first forest:
 - Tree edge: v was discovered by by exploring edge (u,v)
- Edge (u,v) not in depth-first forest:
 - Back edge: v is ancestor of u in depth-first forest
 - Forward edge: v is descendant of u in depth-first forest
 - Cross edge: Any other edge



DFS-Based Topological Sort Algorithm

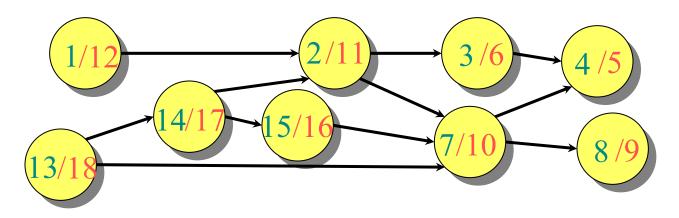
- Call DFS on the directed acyclic graph G=(V,E) \Rightarrow Finish time for every vertex
- Reverse the finish times (highest finish time becomes the lowest finish time,...)
 - $\Rightarrow \text{Valid function } f: V \rightarrow \{1, 2, ..., |V|\} \text{ such that} \\ (u, v) \in E \Rightarrow f(u) < f(v).$

Runtime: O(|V|+|E|)

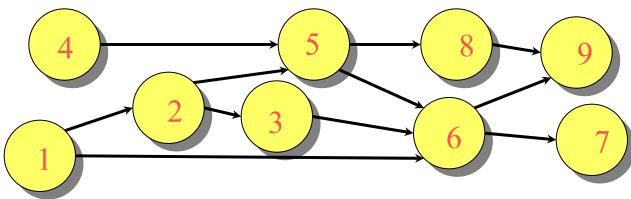


DFS-Based Topological Sort

• Run DFS:



• Reverse finish times:



Topological Sort Runtime

Runtime:

- O(|V|) to build heap + O(|E|) DECREASE-KEY ops
- \Rightarrow O(|V| + |E| log |V|) with a binary heap
- \Rightarrow O(|V| + |E|) with a Fibonacci heap
- DFS-based algorithm: O(|V| + |E|)