

Have seen so far

- Algorithms for various problems
- Running times $\mathrm{O}\left(\mathrm{nm}^{2}\right), \mathrm{O}\left(\mathrm{n}^{2}\right), \mathrm{O}(\mathrm{n} \log \mathrm{n})$, $\mathrm{O}(\mathrm{n})$, etc.
- I.e., polynomial in the input size
- Can we solve all (or most of) interesting problems in polynomial time?
- Not really...

Example difficult problem

Another difficult problem

- Traveling Salesperson Problem (TSP)
- Input: undirected graph with lengths on edges
- Output: shortest tour that visits each vertex exactly once
- Clique:
- Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Output: largest subset C of V such that every pair of vertices in C has an edge between them
- Best known algorithm:
$\mathrm{O}\left(\mathrm{n} 2^{\mathrm{n}}\right)$ time.

What can we do ?

- Spend more time designing algorithms for those problems
- People tried for a few decades, no luck
- Prove there is no polynomial time algorithm for those problems
- Would be great
- Seems really difficult
- Best lower bounds for "natural" problems:
- $\Omega\left(\mathrm{n}^{2}\right)$ for restricted computational models
- 4.5 n for unrestricted computational models

What else can we do ?

- Show that those hard problems are essentially equivalent. I.e., if we can solve one of them in polynomial time, then all others can be solved in polynomial time as well.
- Works for at least 10000 hard problems

Summing up

- If we show that a problem Π is equivalent to ten thousand other well studied problems without efficient algorithms, then we get a very strong evidence that Π is hard.
- We need to:
- Identify the class of problems of interest
- Define the notion of equivalence
- Prove the equivalence(s)

Class of problems: NP

- Decision problems: answer YES or NO. E.g.," ${ }^{\text {"is }}$ there a tour of length $\leq \mathrm{K}$ "?
- Solvable in non-deterministic polynomial time:
- Intuitively: the solution can be verified in polynomial time
- E.g., if someone gives us a tour T, we can verify in polynomial time if T is a tour of length $\leq \mathrm{K}$.
- Therefore, TSP is in NP.

Formal definitions of P and NP

- A decision problem Π is solvable in polynomial time (or $\Pi \in \mathrm{P}$), if there is a polynomial time algorithm $A($.$) such that for any input x$:

$\Pi(x)=$ YES iff $\mathrm{A}(\mathrm{x})=\mathrm{YES}$

- A decision problem Π is solvable in nondeterministic polynomial time (or $\Pi \in \mathrm{NP}$), if there is a polynomial time algorithm $\mathrm{A}(.$, .) such that for any input x :
$\Pi(x)=$ YES iff there exists a certificate y of size poly $(|x|)$ such that $A(x, y)=Y E S$

Reductions: Π ' to Π

Yes: $\mathrm{A}(\mathrm{x}, \mathrm{y})$ interprets x as a graph G, y as a set C , and checks if all vertices in C are adjacent and if $|C| \geq K$

- Is Sorting in NP?

No, not a decision problem.

- Is "Sortedness" in NP ?

Yes: ignore y , and check if the input x is sorted.

Reductions: Π^{\prime} to Π

11/15/07
CS 3343 Analysis of Algorithms

Reductions

- Π^{\prime} is polynomial time reducible to $\Pi\left(\Pi^{\prime} \leq \Pi\right)$ iff there is a polynomial time function f that maps inputs x ' for Π ' into inputs x for Π, such that for any x '

$$
\prod^{\prime}\left(\mathrm{x}^{\prime}\right)=\prod^{\prime}\left(\mathrm{f}\left(\mathrm{x}^{\prime}\right)\right)
$$

- Fact 1: if $\Pi \in P$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in P$
- Fact 2: if $\Pi \in \mathrm{NP}$ and $\Pi^{\prime} \leq \Pi$ then $\Pi^{\prime} \in \mathrm{NP}$
- Fact 3 (transitivity):

$$
\text { if } \Pi^{\prime} \prime \leq \Pi^{\prime} \text { and } \Pi^{\prime} \leq \Pi \text { then } \Pi^{\prime \prime} \leq \Pi
$$

11/15/07
CS 3343 Analysis of Algorithms

Recap

- We defined a large class of interesting problems, namely NP
- We have a way of saying that one problem is not harder than another $\left(\Pi^{\prime} \leq \Pi\right)$
- Our goal: show equivalence between hard problems

Showing equivalence between difficult problems

- Options:
- Show reductions between all pairs of problems
- Reduce the number of reductions using transitivity of " \leq "

The first problem Π

- Satisfiability problem (SAT):
- Given: a formula φ with m clauses over n variables, e.g., $\mathrm{x}_{1} v \mathrm{X}_{2} \mathrm{v} \mathrm{X}_{5}, \mathrm{X}_{3} v \neg \mathrm{X}_{5}$
- Check if there exists TRUE/FALSE assignments to the variables that makes the formula satisfiable

SAT is NP-complete

- Fact: SAT $\in N P$
- Theorem [Cook'71]: For any $\prod^{\prime} \in N P$ we have Π ' \leq SAT.

- Definition: A problem Π such that for any $\Pi ' \in \mathrm{NP}$ we have $\Pi^{\prime} \leq \Pi$, is called $N P$-hard
- Definition: An NP-hard problem that belongs to NP is called NP-complete
- Corollary: SAT is NP-complete.

Plan of attack:

Conclusion: all of the above problems are NPcomplete
11/15/07
CS 3343 Analysis of Algorithms

Clique again

- Clique (decision variant):
- Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{K}$
- Output: is there a subset C of $\mathrm{V},|\mathrm{C}| \geq \mathrm{K}$, such that every pair of vertices in C has an edge between them

SAT \leq Clique

 $\underbrace{\prime}$- Given a $\overbrace{\text { SAT formula } \varphi=C_{1}, \ldots, C_{m}}$ over $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$, we need to produce

$$
\underbrace{G=(V, E) \text { and } K,}_{f\left(x^{\prime}\right)=x}
$$

such that φ satisfiable iff G has a clique of size $\geq K$.

- Notation: a literal is either x_{i} or $\neg \mathrm{x}_{\mathrm{i}}$

SAT \leq Clique example

Edge $\mathrm{v}_{\mathrm{t}}-\mathrm{v}_{\mathrm{t}^{\prime}} \Leftrightarrow \stackrel{\bullet}{\mathrm{t}}$ and t^{\prime} are not in the same clause, and

- Formula: $\mathrm{X}_{1} \mathrm{v} \mathrm{X}_{2} \vee \mathrm{X}_{3}, \neg \mathrm{X}_{2} \vee \neg \mathrm{X}_{3}, \neg \mathrm{X}_{1} \vee \mathrm{X}_{2}$
- Graph:

- Claim: φ satisfiable iff G has a clique of size $\geq m$

Proof

$$
\text { Edge } \mathrm{v}_{\mathrm{t}}-\mathrm{v}_{\mathrm{t}^{\prime}} \Leftrightarrow \begin{aligned}
& \bullet \mathrm{t} \text { and } \mathrm{t}^{\prime} \text { are not in the same clause, and } \\
& \bullet \mathrm{t} \text { is not the negation of } \mathrm{t}^{\prime}
\end{aligned}
$$

- " \rightarrow " part:
- Take any assignment that satisfies φ.
E.g., $x_{1}=F, x_{2}=T, x_{3}=F$

- Let the set C contain one satisfied literal per clause
-C is a clique

Altogether

- We constructed a reduction that maps:
- YES inputs to SAT to YES inputs to Clique
- NO inputs to SAT to NO inputs to Clique
- The reduction works in polynomial time
- Therefore, SAT \leq Clique \rightarrow Clique NP-hard
- Clique is in NP \rightarrow Clique is NP-complete

Clique \leq IS

$f\left(x^{\prime}\right)=x \cdot A$ for $\Pi \quad$ NO \longrightarrow NO
A^{\prime} for Π^{\prime}

- Given an input $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{K}$ to Clique, need to construct an input $\underbrace{G^{\prime}=\left(V^{\prime}, E^{\prime}\right), ~ K}$ ' to IS,

$$
f\left(x^{\prime}\right)=x
$$

such that G has clique of size
 $\geq \mathrm{K}$ iff G^{\prime} has IS of size $\geq \mathrm{K}^{\prime}$.

- Construction: $\mathrm{K}^{\prime}=\mathrm{K}, \mathrm{V}^{\prime}=\mathrm{V}, \mathrm{E}^{\prime}=\overline{\mathrm{E}}$
- Reason: C is a clique in G iff it is an IS in G's complement.

Vertex cover (VC)

- Input: undirected graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Output: is there a subset C
 of $\mathrm{V},|\mathrm{C}| \leq \mathrm{K}$, such that each edge in E is incident to at least one vertex in C.

IS \leq VC

X'

- Given an input $\mathrm{G}=(\mathrm{V}, \mathrm{E}), \mathrm{K}$ to IS , need to construct an input
$\underbrace{G^{\prime}=\left(V^{\prime}, E^{\prime}\right), K^{\prime}}_{f\left(X^{\prime}\right)=x}$ to VC, such that
G has an IS of size $\geq K$ iff G^{\prime} has VC of size $\leq \mathrm{K}^{\prime}$.
- Construction: $\mathrm{V}^{\prime}=\mathrm{V}, \mathrm{E}^{\prime}=\mathrm{E}, \mathrm{K}^{\prime}=|\mathrm{V}|-\mathrm{K}$
- Reason: S is an IS in G iff $\mathrm{V}-\mathrm{S}$ is a VC in G .

