CS 3343 - Fall 2007

Graphs

Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Graphs

Definition. A directed graph (digraph) $G=(V, E)$ is an ordered pair consisting of - a set V of vertices (singular: vertex),

- a set $E \subseteq V \times V$ of edges.

In an undirected graph $G=(V, E)$, the edge set E consists of unordered pairs of vertices.
In either case, we have $|E|=O\left(|V|^{2}\right)$.
(Review CLRS, Appendix B. 4 and B.5.)

ALGORITHMS
 Adjacency-matrix representation

The adjacency matrix of a graph $G=(V, E)$, where $V=\{1,2, \ldots, n\}$, is the matrix $A[1 \ldots n, 1 \ldots n]$ given by

$$
A[i, j]= \begin{cases}1 & \text { if }(i, j) \in \mathrm{E}, \\ 0 & \text { if }(i, j) \notin \mathrm{E} .\end{cases}
$$

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

$\Theta\left(|V|^{2}\right)$ storage \Rightarrow dense representation.

Adjacency-list representation

An adjacency list of a vertex $v \in V$ is the list $\operatorname{Adj}[v]$ of vertices adjacent to v.

$$
\begin{aligned}
\operatorname{Adj}[1] & =\{2,3\} \\
\operatorname{Adj}[2] & =\{3\} \\
\operatorname{Adj}[3] & =\{ \} \\
\operatorname{Adj}[4] & =\{3\}
\end{aligned}
$$

For undirected graphs, $|\operatorname{Adj}[v]|=\operatorname{degree}(v)$. For digraphs, $|\operatorname{Adj}[v]|=$ out-degree(v).

Adjacency-list representation

Handshaking Lemma:

Every edge is counted twice

- For undirected graphs:

$$
\sum_{v \in V} \text { degree }(v)=2|\mathrm{E}|
$$

- For digraphs:

$$
\sum_{v \in V} \text { in-degree }(v)+\sum_{v \in V} \text { out-degree }(v)=2|\mathrm{E}|
$$

\Rightarrow adjacency lists use $\Theta(|V|+|E|)$ storage
\Rightarrow a sparse representation

Graph Traversal

Let $G=(V, E)$ be a (directed or undirected) graph, given in adjacency list representation.
$|V|=n,|E|=m$
A graph traversal visits every vertex:

- Breadth-first search (BFS)
- Depth-first search (DFS)

Depth-First Search (DFS)

$\operatorname{DFS}(G=(V, E))$ for each vertex $v \in V$ do
if v is unvisited DFS_rec (G, v)

DFS_rec (G, v) visit $v / /$ time++
for each w adjacent to v do
$\mathrm{O}(\operatorname{deg}(v))$ without recursive call if w is unvisited

Add edge (v, w) to tree T DFS_rec (G, w)
\Rightarrow With Handshaking Lemma, all recursive calls are $\mathrm{O}(\mathrm{m})$, for a total of $\mathrm{O}(n+m)$ runtime

DFS runtime

- Each vertex is visited at most once $\Rightarrow \mathrm{O}(n)$ time
- The body of the for loops (except the recursive call) take constant time per graph edge
- All for loops take $\mathrm{O}(m)$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

Breadth-First Search (BFS)

$\operatorname{BFS}(G=(V, E))$

Mark all vertices in G as "unvisited" // time $=0$
Initialize empty queue Q
for each vertex $v \in V$ do
if v is unvisited

visit $v / /$ time++	
Q.enqueue (v)	BFS_iter (G)
BFS_iter (G)	while Q is non-empty do
	$v=Q$.dequeue($)$

for each w adjacent to v do

if w is unvisited
visit w // time++
Add edge (v, w) to T
Q. enqueue (w)

BFS runtime

- Each vertex is marked as unvisited in the beginning $\Rightarrow \mathrm{O}(n)$ time
- Each vertex is marked at most once, enqueued at most once, and therefore dequeued at most once
- The time to process a vertex is proportional to the size of its adjacency list (its degree), since the graph is given in adjacency list representation
$\Rightarrow \mathrm{O}(m)$ time
- Total runtime is $\mathrm{O}(n+m)=\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$

