9/18/07

Schedule

(subject to change)

Date	Material
Tu 9/18	Recursion trees and induction (+)
	Guess solution of recursions using recursion trees and prove the solutions using
	induction (= "substitution method")
	Homework 3 assigned
Th $9/20$	Recursion trees and induction $(+)$
	Guess solution of recursions using recursion trees and prove the solutions using
	induction (= "substitution method")
Tu 9/25	Strassen's matrix multiplication (Ch. 4.5)
	Fast matrix multiplication using divide-and-conquer
	Homework 3 due; homework 4 assigned
Th $9/27$	Quicksort (Ch. 4.2)
	Quicksort, best-case and worst-case runtimes, randomized quicksort.
Tu $10/2$	Heapsort (Ch. 6.4)
	Heaps, heap-order property, priority queues. Heapsort.
	Homework 4 due
Th $10/4$	Test 1
	Material until 9/25 (inclusive)
Tu $10/9$	Sorting (Ch. 7.1 and 11.2)
	Decision trees, lower $\Omega(n \log n)$ bound for comparison sorts, counting sort
	Homework 5 assigned
Th $10/11$	Balanced search trees (Ch. 6.3)
	Red-black trees or AVL trees; rotations; abstract data types, ADT dictionary
Tu 10/16	Balanced search trees (Ch. 6.3)
	(2,3)-trees
	Homework 5 due; homework 6 assigned
Th $10/18$	Dynamic programming (Ch. 8.1 +)
	Fibonacci, binomial coefficient; General outline of dynamic programming: Opti-
	mal substructure (recurrence), overlapping subproblems, fill table bottom-up or by
T 10/20	memoization; LCS (Longest common subsequence)
Tu 10/23	Dynamic programming (Ch. 8.4 +)
	LCS; Knapsack
	Homework 6 due; homework 7 assigned
Th $10/25$	Greedy algorithms (+)
T 10/20	Making change, fractional knapsack.
Tu 10/30	Elementary graph algorithms (Ch. 5.2)
	Representations of graphs, breadth-first search (BFS), depth-first search (DFS)
(D) 11/1	Homework 7 due; homework 8 assigned
Th $11/1$	More elementary graph algorithms (Ch. 5.3)
T 11/C	Strongly connected components; Topological sort
Tu 11/6	Minimum Spanning Trees (Ch. 9.1)
	Prim's algorithm (grows single tree)
$T_{\rm b} 11/0$	Homework 8 due
Th $11/8$	Test 2 Material from $0/27$ until $10/20$ (inclusive)
	Material from $9/27$ until $10/30$ (inclusive)

Date	Material
Tu 11/13	Single-source shortest paths (Ch. 9.3)
	Optimal substructure, relaxation step; Dijkstra's algorithm (only for non-negative
	edge weights), predecessor tree (shortest path tree)
	Homework 9 assigned
Th $11/15$	P and NP (Ch. 11.3 +)
	Decision problems, definition of classes P and NP, polynomial-time reductions
Tu 11/20	P and NP (Ch. 11.3 +)
	NP-hardness, NP-completeness; Show that problems are NP-complete by reducing
	from other problems; TSP, Clique, Independent Set, Vertex Cover, Hamilton Path,
	Hamilton Circuit
	Homework 9 due; homework 10 assigned
Th $11/22$	Thanksgiving holiday
Tu 11/27	P and NP, and Approximation algorithms (Ch. 12.3)
	More examples of NP-complete problems and reductions. Approximation algorithms
	for NP-hard problems. Tree-walk for TSP.
Th $11/29$	Review for final exam
	The final exam will be comprehensive and cover all topics that have been covered
	in class.
	Homework 10 due

Chapter numbers refer to Levitin's book. "+" indicates additional material.

The final exam will take place on Friday December 7, 10:30am-1pm in the classroom.