CS 2233 Discrete Mathematical Structures - Fall 09

11/9/09

7. Homework
 Due 11/18/09 before class

Please refer to the corresponding exercise sections in the textbook (Rosen, 6th edition).

1. Expansion Method (2 points)

For the recurrence below use the expansion method to find a guess of what it could solve to. Make your guess as tight as possible.
$T(1)=1$, and $T(n)=2 T\left(\frac{n}{2}\right)+n$ for $n \geq 2$.
2. Master Theorem (8 points)

Use the master theorem to prove the following claims. Justify your answers.
(a) (2 points) $T(n)=3 T\left(\frac{n}{3}\right)+1$
(b) (2 points) $T(n)=27 T\left(\frac{n}{3}\right)+n^{5}$
(c) (2 points) $T(n)=25 T\left(\frac{n}{5}\right)+5 n^{2}$
(d) (2 points) $T(n)=8 T\left(\frac{n}{2}\right)+n^{2}$
3. Recursive Mystery (4 points)

Consider the following recursive code for $n \geq 1$:

```
int mystery(int n){
    if(n==0) return 1;
    if(n==1) return 1;
    for(int i=0; i<n; i++){
        for(int j=0; j<n; j++){
            print("hello");
        }
    }
    int a = mystery(n/9);
    int b = mystery(n/9);
    int c = mystery(n/9);
    return a+b;
}
```

(a) (2 points) Set up a runtime recurrence for the runtime $T(n)$ of this recursive algorithm.
(b) (2 points) Solve this runtime recurrence using the master theorem. (Hint: Use the definition of the logarithm: $x=\log _{b} a \quad \Leftrightarrow \quad b^{x}=a$.)
4. Section 7.2 (page 471)
(6 points) $4 \mathrm{c}, \mathrm{d}$. Use the theorem we covered in class.

