CS 2233 Discrete Mathematical Structures - Fall 09

10/19/09

6. Homework

Due 10/28/09 before class
Please refer to the corresponding exercise sections in the textbook (Rosen, 6th edition).
Annotate all your proofs with comments/text in order to receive full credit.
4.5 (5 points) Use the loop invariant (I): sum=a[0]+...+a[i] to show that the code below correctly computes the sum of all elements in an array a [0..n-1] of n integers, for any $\mathrm{n} \geq 1$. First, use induction to show that (I) is indeed a loop invariant, and then draw conclusions for the termination of the while loop.

```
int computeSum(int[] a[0..n-1]){
        sum = a[0];
        i=0;
        while(i<n-1){
            // (I) sum=a[0]+...+a[i]
            i++;
            sum = sum + a[i];
        }
        return sum;
}
```

4.3 (page 308)
(a) (4 points) 8 a, d. First write down the first six elements of the sequence, and then try to find a recursive solution. Do not forget the base case. (You do not need to prove the correctness of your solution.)
(b) (4 points) 18. Use strong induction. (Hint: Matrix multiplication is explained on page 248. Use the recursive definition of the Fibonacci numbers on page 297.)
(c) (5 points) 26a (only for the first three applications of the recursive definition), 26c. (Hint: a $\mid b$ reads a divides b. $a \mid b \leftrightarrow \exists k \in \mathbb{Z}: b=a * k$. For example $5 \mid 15$ and $7 \mid 28$. See page 201.)
(d) (4 points) Give a recursive algorithm to compute the maximum element of an array of n integers. Also give the initial call to your recursive algorithm.
7.1 (page 457)
(4 points) 8a,b. Use the expansion method to find explicit formulas. You do not need to prove the correctness of your solutions.

