CS 2233 Discrete Mathematical Structures - Fall 09

10/12/09

5. Homework
 Due 10/21/09 before class

Please refer to the corresponding exercise sections in the textbook (Rosen, 6th edition). Annotate all your proofs with comments/text in order to receive full credit.
4.1 (page 279)
(a) (5 points) Let $P(n)$ be the statement given in exercise 6 , for a positive integer n. For this proposition, answer the same questions as in 4 a -e which guide you through a proof by (weak) induction.
(b) (4 points) Prove 14 by (weak) induction.
(c) (3 points) Prove 20 by (weak) induction.
(d) (4 points) Prove 40 by (weak) induction for all $n \in \mathbb{Z}^{+}$.
4.2 (page 291)
(a) (4 points) Use strong induction to prove 38. (Hint: Draw an example first and try to indentify recursive/inductive subcases.)
(b) (4 points) Assume you want to prove the claim: "It is possible to express any amount of at least $\$ 8$ or above using $\$ 3$-bills and $\$ 5$-bills."
Formally, this claim is expressed as: $\forall n \geq 8: P(n)$, where $P(n)=\exists x \in \mathbb{N} \exists y \in \mathbb{N}: n=3 x+5 y$.
Use strong induction to prove this claim. (Hint: Prove $P(8), P(9), P(10)$ for the base case. For the inductive step, try to use either a \$3-bill or a \$5-bill.)

