CS 2233 Discrete Mathematical Structures - Fall 08

10/22/08

6. Homework

Due 11/3/08 before class

1. Guessing

For each of the following recurrences use either the expansion method or the recursion tree method to find a guess of what it could solve to. Make your guess as tight as possible. (Hint: Use $\log _{3} n$ instead of $\log _{2} n$.)
(a) (2 points) $T(1)=1$, and $T(n)=3 T\left(\frac{n}{3}\right)+1$ for $n \geq 2$.
(b) (2 points) $T(1)=1$, and $T(n)=3 T\left(\frac{n}{3}\right)+n$ for $n \geq 2$.
(c) (2 points) $T(1)=1$, and $T(n)=3 T\left(\frac{n}{3}\right)+n^{2}$ for $n \geq 2$.
2. Big-Oh Induction (3 points)

Let $T(n)=2 T\left(\frac{n}{2}\right)+5 n^{2}$ for $n \geq 2$ and $T(1)=1$.
Use induction to prove that $T(n) \in O\left(n^{2}\right)$.
3. Master Theorem

Use the master theorem to prove the following claims. Justify your answers.
(a) (2 points) $T(n)=9 T\left(\frac{n}{3}\right)+1$
(b) (2 points) $T(n)=9 T\left(\frac{n}{3}\right)+n$
(c) (2 points) $T(n)=16 T\left(\frac{n}{4}\right)+n^{2}$
(d) (2 points) $T(n)=8 T\left(\frac{n}{2}\right)+n^{4}$

4. Divide and Conquer

Suppose you want to compute $n * 5$ in a programming language that does not have a built-in multiplication operator. The only operators you are allowed to use are addition, subtraction, multiplication by 2 , and division by 2 (the latter two are allowed because they only involve shifting on the bit level).
(a) (3 points) Write a divide-and-conquer algorithm int multiply (int n) that computes $n * 5$, for any $n \geq 1$, using only the allowed operations. Your algorithm should run in $O(\log n)$ time. (Hint: Use the fact that $n * 5=$ $5+5+5+\ldots+5$.)
(b) (1 point) What is the runtime recurrence for your algorithm?
(c) (1 point) Why does the runtime recurrence solve to $O(\log n)$?

