CMPS 6640/4040 Computational Geometry Spring 2016

Point Location

Carola Wenk

Based on: <u>Computational Geometry: Algorithms and Applications</u> and <u>David Mount's lecture notes</u> *CMPS 6640/4040 Computational Geometry*

2/4/16

Polygons and Triangulations

- A **simple polygon** *P* in the plane is the region enclosed by a simple polygonal chain that does not self-intersect.
- A **triangulation** of a polygon *P* is a decomposition of *P* into triangles whose vertices are vertices of *P*. In other words, a triangulation is a maximal set of non-crossing diagonals.

Polygons and Triangulations

• A polygon can be triangulated in many different ways.

Dual graph

- The **dual graph** of a triangulation (or of a planar subdivision in general) has a vertex for each triangle (face) and an edge for each edge between triangles (faces)
- The dual graph of a triangulated polygon is a tree (connected acyclic graph): Removing an edge corresponds to removing a diagonal in the polygon which disconnects the polygon and with that the graph.

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with *n* vertices consists of exactly n-2 triangles.

Proof: By induction.

- *n*=3:
- n>3: Let u be leftmost vertex, and v and w adjacent to v. If vw does not intersect boundary of P: #triangles = 1 for new triangle + (n-1)-2 for remaining polygon = n-2

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with *n* vertices consists of exactly n-2 triangles.

If $\forall w$ intersects boundary of *P*: Let $u' \neq u$ be the the vertex furthest to the left of $\forall w$. Take uu' as diagonal, which splits *P* into *P*₁ and *P*₂. #triangles in *P* = #triangles in *P*₁ + #triangles in *P*₂ = |*P*₁|-2 + |*P*₂|-2 = |*P*₁|+|*P*₂|-4 = *n*+2-4 = *n*-2

Point Location

Point location task:

Preprocess a planar subdivision to efficiently answer **point-location queries** of the type: Given a point $p=(p_x,p_y)$, find the face it lies in.

- Important metrics:
 - Time complexity for preprocessing
 time to construct the data structure
 - Space needed to store the data structure
 - Time complexity for querying the data structure

Slab Method

• Slab method:

Draw a vertical line through each vertex. This decomposes the plane into slabs.

- In each slab, the vertical order of the line segments remains constant.
- If we know in which slab *p* lies, we can perform binary search, using the sorted order of the segments in the slab.
- Find slab that contains p by binary search on x among slab boundaries.
- A second binary search in slab determines the face containing *p*.
- Search complexity $O(\log n)$, but space complexity $\Theta(n^2)$.

Kirkpatrick's Algorithm

- Needs a triangulation as input.
- Can convert a planar subdivision with *n* vertices into a triangulation:
 - Triangulate each face, keep same label as original face.
 - If the outer face is not a triangle:
 - Compute the convex hull of the subdivision.
 - Triangulate pockets between the subdivision and the convex hull.
 - Add a large triangle (new vertices a, b, c) around the convex hull, and triangulate the space in-between.

- The size of the triangulated planar subdivision is still O(n), by Euler's formula.
- The conversion can be done in $O(n \log n)$ time.
- Given *p*, if we find a triangle containing *p* we also know the (label of) the original subdivision face containing *p*.

Kirkpatrick's Hierarchy

- Compute a sequence $T_0, T_1, ..., T_k$ of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence T_0 , T_1 , ..., T_k should have the following properties:
 - $-T_0$ is the input triangulation, T_k is the outer triangle
 - $-k \in O(\log n)$
 - Each triangle in T_{i+1} overlaps O(1) triangles in T_i
- How to build such a sequence?
 - Need to delete vertices from T_i .
 - Vertex deletion creates holes, which need to be re-triangulated.
- How do we go from T_0 of size O(n) to T_k of size O(1) in $k=O(\log n)$ steps?
 - In each step, delete a constant fraction of vertices from T_i .

• We also need to ensure that each new triangle in T_{i+1} overlaps with only O(1) triangles in T_i .

Vertex Deletion and Independent Sets

When creating T_{i+1} from T_i , delete vertices from T_i that have the following properties:

- Constant degree:

Each vertex \vec{v} to be deleted has O(1) degree in the graph T_i .

- If v has degree d, the resulting hole can be retriangulated with d-2 triangles
- Each new triangle in T_{i+1} overlaps at most *d* original triangles in T_i

– Independent sets:

No two deleted vertices are adjacent.

• Each hole can be re-triangulated independently.

Independent Set Lemma

Lemma: Every planar graph on *n* vertices contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T₀, and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and re-triangulate holes.
- The resulting triangulation, T_1 , has at most 17/18n a vertices.
- Repeat the process to build the hierarchy, until T_k equals the outer triangle with vertices **a**, **b**, **c**.
- The depth of the hierarchy is $k = \log_{18/17} n$

Hierarchy Example

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T₀, and select an independent set S of size n/18 in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of *S*, and re-triangulate holes.
- The resulting triangulation, T_1 , has at most 17/18n vertices.
- Repeat the process to build the hierarchy, until T_k equals the outer triangle with vertices **a**, **b**, **c**.
- The depth of the hierarchy is $k = \log_{18/17} n$

Hierarchy Data Structure

Store the hierarchy as a DAG:

- The root is T_k .
- Nodes in each level correspond to triangles T_i .
- Each node for a triangle in T_{i+1} stores pointers to all triangles of T_i that it overlaps.

How to locate point *p* in the DAG:

- Start at the root. If p is outside of T_k then p is in exterior face; done.
- Else, set Δ to be the triangle at the current level that contains p.
- Check each of the at most 6 triangles of T_{k-1} that overlap with Δ , whether they contain **p**. Update Δ and descend in the hierarchy until reaching T_0 .
- Output Δ . $\frac{2}{4}$

Analysis

- Query time is O(log *n*): There are O(log *n*) levels and it takes constant time to move between levels.
- **Space complexity** is **O**(*n*):
 - Sum up sizes of all triangulations in hierarchy.
 - Because of Euler's formula, it suffices to sum up the number of vertices.
 - Total number of vertices:

 $n + 17/18 n + (17/18)^2 n + (17/18)^3 n$ + ... $\leq 1/(1-17/18) n = 18 n$

- **Preprocessing time** is O(n log n):
 - Triangulating the subdivision takes $O(n \log n)$ time.
 - The time to build the DAG is proportional to its size.

Independent Set Lemma

Lemma: Every planar graph on *n* vertices contains an independent vertex set of size n/18 in which each vertex has degree at most 8. Such a set can be computed in O(n) time.

Proof:

Algorithm to construct independent set:

- Mark all vertices of degree ≥ 9
- While there is an unmarked vertex
 - Let **v** be an unmarked vertex
 - Add **v** to the independent set
 - Mark **v** and all its neighbors

• Can be implemented in O(n) time: Keep list of unmarked vertices, and store the triangulation in a data structure that allows finding neighbors in O(1) time.

Independent Set Lemma

Still need to prove existence of large independent set.

- Euler's formula for a triangulated planar graph on *n* vertices: #edges = 3n - 6
- Sum over vertex degrees: $\sum_{v} \deg(v) = 2 \# \text{edges} = 6n - 12 < 6n$
- Claim: At least n/2 vertices have degree ≤ 8.
 Proof: By contradiction. So, suppose otherwise.
 → n/2 vertices have degree ≥ 9. The remaining have degree ≥ 3.
 → The sum of the degrees is ≥ 9 n/2 + 3 n/2 = 6n. Contradiction.
- In the beginning of the algorithm, at least n/2 nodes are unmarked. Each picked vertex v marks ≤ 8 other vertices, so including itself 9.
- Therefore, the while loop can be repeated at least n/18 times.
- This shows that there is an independent set of size at least n/18 in which each node has degree ≤ 8 .

Kirkpatrick's Hierarchy Summary

- Kirkpatrick's point location data structure needs O(*n* log *n*) preprocessing time, O(*n*) space, and has O(log *n*) query time. It involves rather high constant factors though.
- It can also be used to create a hierarchy of polytopes: The Dobkin-Kirkpatrick decomposition

CMPS 6640/4040 Computational Geometry

Use of Dobkin-Kirkpatrick's Hierarchy for Polytopes/Polyhedra

Efficiently answer the following types of queries:

- Find an extreme point in a given direction.
- Locate a point on the polytope closest to a query point.
- Compute the intersection of two polytopes (\rightarrow collision detection)

CMPS 6640/4040 Computational Geometry

Extreme Points

Let's start with 2D:

Given a convex polygon (as a list of *n* vertices in counter-clockwise order around the polygon), how fast can one find a point with maximum *y*-coordinate?

Answer: In $O(\log n)$ time using a variant of binary search.

What about a convex polytope in 3D? How fast can one find a point on it with maximum *z*-coordinate?

Answer 1: Trivially in O(n) time by checking each vertex.

Answer 2: Preprocess the polytope using Dobkin-Kirkpatrick's hierarchy in $O(n \log n)$ time and O(n) space. Then develop an $O(\log n)$ time query algorithm.