CMPS 6640/4040 Computational Geometry

 Spring 2016

Triangulations, Planar Subdivisions and Point Location

Carola Wenk

Based on:
Computational Geometry: Algorithms and Applications and David Mount's lecture notes

Polygons and Triangulations

- A simple polygon P in the plane is the region enclosed by a simple polygonal chain that does not self-intersect.
- A triangulation of a polygon P is a decomposition of P into triangles whose vertices are vertices of P. In other words, a triangulation is a maximal set of non-crossing diagonals.

Polygons and Triangulations

- A polygon can be triangulated in many different ways.

Dual graph

- The dual graph of a triangulation (or of a planar subdivision in general) has a vertex for each triangle (face) and an edge for each edge between triangles (faces)
- The dual graph of a triangulated polygon is a tree (connected acyclic graph): Removing an edge corresponds to removing a diagonal in the polygon which disconnects the polygon and with that the graph.

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles.
Proof: By induction.

- $n=3$:
\triangle
- $n>3$: Let u be leftmost vertex, and v and w adjacent to v. If $v w$ does not intersect boundary of P : \#triangles $=1$ for new triangle $+(n-1)-2$ for remaining polygon $=n-2$

Triangulations of Simple Polygons

Theorem 1: Every simple polygon admits a triangulation, and any triangulation of a simple polygon with n vertices consists of exactly $n-2$ triangles.

If $\stackrel{v}{ }$ intersects boundary of P : Let $u^{\prime} \neq u$ be the the vertex furthest to the left of $\overline{v w}$. Take $t u$ ' as diagonal, which splits P into P_{1} and P_{2}. \#triangles in $P=$ \#triangles in $P_{1}+$ \#triangles in $P_{2}=\left|P_{1}\right|-2+\left|P_{2}\right|-2=$ $\left|P_{1}\right|+\left|P_{2}\right|-4=n+2-4=n-2$

Point Location

- Point location task:

Preprocess a planar subdivision to efficiently answer point-location queries of the type: Given a point $p=\left(p_{x}, p_{y}\right)$, find the face it lies in.

- Important metrics:
- Time complexity for preprocessing = time to construct the data structure

- Space needed to store the data structure
- Time complexity for querying the data structure

Slab Method

- Slab method:

Draw a vertical line through each vertex. This decomposes the plane into slabs.

- In each slab, the vertical order of the line segments remains constant.
- If we know in which slab p lies, we can perform binary search, using the sorted order of the segments in the slab.
- Find slab that contains p by binary search on x among slab boundaries.
- A second binary search in slab determines the face containing p.
- Search complexity $\mathrm{O}(\log n)$, but space complexity $\Theta\left(n^{2}\right)$.

Kirkpatrick's Algorithm

- Needs a triangulation as input.
- Can convert a planar subdivision with n vertices into a triangulation:
- Triangulate each face, keep same label as original face.
- If the outer face is not a triangle:
- Compute the convex hull of the subdivision.
- Triangulate pockets between the subdivision and the convex hull.
- Add a large triangle (new vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$) around the convex hull, and
 triangulate the space in-between.
- The size of the triangulated planar subdivision is still $\mathrm{O}(n)$, by Euler's formula.
- The conversion can be done in $\mathrm{O}(n \log n)$ time.
- Given p, if we find a triangle containing p we also know the (label of) the original subdivision face containing p.

Kirkpatrick's Hierarchy

- Compute a sequence $T_{0}, T_{1}, \ldots, T_{\mathrm{k}}$ of increasingly coarser triangulations such that the last one has constant complexity.
- The sequence $T_{0}, T_{1}, \ldots, T_{\mathrm{k}}$ should have the following properties:
- T_{0} is the input triangulation, T_{k} is the outer triangle
- $k \in \mathrm{O}(\log n)$
- Each triangle in $T_{\mathrm{i}+1}$ overlaps $\mathrm{O}(1)$ triangles in T_{i}
- How to build such a sequence?
- Need to delete vertices from T_{i}.
- Vertex deletion creates holes, which need to be re-triangulated.
- How do we go from T_{0} of size $\mathrm{O}(n)$ to T_{k} of size $\mathrm{O}(1)$ in $k=\mathrm{O}(\log n)$ steps?
- In each step, delete a constant fraction of vertices from T_{i}.

- We also need to ensure that each new triangle in T_{i+1} overlaps with only $\mathrm{O}(1)$ triangles in T_{i}.

Vertex Deletion and Independent Sets

When creating $T_{\mathrm{i}+1}$ from T_{i}, delete vertices from T_{i} that have the following properties:

- Constant degree: Each vertex \mathbf{v} to be deleted has $\mathrm{O}(1)$ degree in the graph T_{i}.
- If \mathbf{v} has degree d, the resulting hole can be retriangulated with $d-2$ triangles
- Each new triangle in $T_{\mathrm{i}+1}$ overlaps at most d original triangles in T_{i}
- Independent sets:

No two deleted vertices are adjacent.

- Each hole can be re-triangulated independently.

Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n / 18$ in which each vertex has degree at most 8 . Such a set can be computed in $\mathrm{O}(n)$ time.

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T_{0}, and select an independent set S of size $n / 18$ in which each vertex has maximum degree 8. [Never pick the outer triangle vertices a, b, c.]
- Remove vertices of S, and re-triangulate holes.
- The resulting triangulation, T_{1}, has at most $17 / 18 n$
 vertices.
- Repeat the process to build the hierarchy, until T_{k} equals the outer triangle with vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
- The depth of the hierarchy is $k=\log _{18 / 17} n$

Hierarchy Example

Use this lemma to construct Kirkpatrick's hierarchy:

- Start with T_{0}, and select an independent set S of size $n / 18$ in which each vertex has maximum degree 8 . [Never pick the outer triangle vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.]
- Remove vertices of S, and retriangulate holes.
- The resulting triangulation, T_{1}, has at most $17 / 18 n$ vertices.
- Repeat the process to build the hierarchy, until T_{k} equals the outer triangle with vertices $\mathbf{a}, \mathbf{b}, \mathbf{c}$.
- The depth of the hierarchy is

$$
k=\log _{18 / 17} n
$$

Hierarchy Data Structure

Store the hierarchy as a DAG:

- The root is T_{k}.
- Nodes in each level correspond to triangles T_{i}.
- Each node for a triangle in T_{i+1} stores pointers to all triangles of T_{i} that it overlaps.

How to locate point p in the DAG:

- Start at the root. If p is outside of T_{k} then p is in exterior face; done.
- Else, set Δ to be the triangle at the current level that contains p.
- Check each of the at most 6 triangles of $T_{\mathrm{k}-1}$ that overlap with Δ, whether they contain p. Update Δ and descend in the hierarchy until reaching T_{0}.
- Output Δ.

Analysis

- Query time is $O(\log n)$: There are $\mathrm{O}(\log n)$ levels and it takes constant time to move between levels.
- Space complexity is $\mathrm{O}(n)$:
- Sum up sizes of all triangulations in hierarchy.
- Because of Euler's formula, it suffices to sum up the number of vertices.
- Total number of vertices:

$$
\begin{aligned}
& n+17 / 18 n+(17 / 18)^{2} n+(17 / 18)^{3} n \\
& +\ldots \dddot{1} /(1-17 / 18) n=18 n \\
& \leq
\end{aligned}
$$

Independent Set Lemma

Lemma: Every planar graph on n vertices contains an independent vertex set of size $n / 18$ in which each vertex has degree at most 8 . Such a set can be computed in $\mathrm{O}(n)$ time.

Proof:

Algorithm to construct independent set:

- Mark all vertices of degree ≥ 9
- While there is an unmarked vertex
- Let \mathbf{v} be an unmarked vertex
- Add \mathbf{v} to the independent set
- Mark vand all its neighbors

- Can be implemented in $\mathrm{O}(n)$ time: Keep list of unmarked vertices, and store the triangulation in a data structure that allows finding neighbors in $\mathrm{O}(1)$ time.

Independent Set Lemma

Still need to prove existence of large independent set.

- Euler's formula for a triangulated planar graph on n vertices:

$$
\text { \#edges }=3 n-6
$$

- Sum over vertex degrees:

$$
\sum_{v} \operatorname{deg}(v)=2 \# \text { edges }=6 n-12<6 n
$$

- Claim: At least $n / 2$ vertices have degree ≤ 8.

Proof: By contradiction. So, suppose otherwise.
$\rightarrow n / 2$ vertices have degree ≥ 9. The remaining have degree ≥ 3.
\rightarrow The sum of the degrees is $\geq 9 n / 2+3 n / 2=6 n$. Contradiction.

- In the beginning of the algorithm, at least $n / 2$ nodes are unmarked. Each picked vertex \mathbf{v} marks ≤ 8 other vertices, so including itself 9 .
- Therefore, the while loop can be repeated at least $n / 18$ times.
- This shows that there is an independent set of size at least $n / 18$ in which each node has degree ≤ 8.

Kirkpatrick's Hierarchy Summary

- Kirkpatrick's point location data structure needs $\mathrm{O}(n \log n)$ preprocessing time, $\mathrm{O}(n)$ space, and has $\mathrm{O}(\log n)$ query time. It involves rather high constant factors though.
- It can also be used to create a hierarchy of polytopes: The DobkinKirkpatrick decomposition

Use of Dobkin-Kirkpatrick's Hierarchy for Polytopes/Polyhedra

Efficiently answer the following types of queries:

- Find an extreme point in a given direction.
- Locate a point on the polytope closest to a query point.
- Compute the intersection of two polytopes $(\rightarrow$ collision detection $)$

Extreme Points

Let's start with 2D:
Given a convex polygon (as a list of n vertices in counter-clockwise order around the polygon), how fast can one find a point with maximum y coordinate?

Answer: In $O(\log n)$ time using a variant of binary search.

What about a convex polytope in 3D? How fast can one find a point on it with maximum z-coordinate?

Answer 1: Trivially in $O(n)$ time by checking each vertex.
Answer 2: Preprocess the polytope using Dobkin-Kirkpatrick's hierarchy in $\mathrm{O}(n \log n)$ time and $\mathrm{O}(n)$ space. Then develop an $\mathrm{O}(\log n)$ time query algorithm.

