CMPS 6640/4040 Computational Geometry Spring 2016

Ham Sandwich Theorem Carola Wenk

Ham-Sandwich Theorem

Theorem: Let P and Q be two finite point sets in the plane Then there exists a line l such that on each side of l there are at most $|P| / 2$ points of P and at most $|Q| / 2$ points of Q.

Ham-Sandwich Theorem

Proof:

Find a line l such that on each side of l there are at most $|P| / 2$ points of P.

Then rotate l counter-clockwise in such a way that there are always at most $|P| / 2$ points of P on each side of l.

Rotation

Rotation

Rotation

Rotation

Left: 3
Right: 4

Rotation

Left: 3
Right: 4

Rotation

Left: 4
Right: 3

Rotation

Left: 3
Right: 4

Rotation

Rotation

Left: 2
Right: 4

Rotation

Rotation

Left: 4 Right: 3

Rotation

Rotation

Rotation

Proof Continued

In general, choose the rotation point such that the number of points on each side of l does not change.

Proof Continued

Throughout the rotation, there are at most $|\mathrm{P}| / 2$ points on each side of l.
After 180° rotation, we get the line which is l but directed in the other direction.
Let t be the number of blue points to the left of l at the beginning. In the end, t points are on the right side of l, so $|Q|-t-1$ are on the left side. Therefore, there must have been one orientation of l such that there were t most $|Q| / 2$ points on each side of l.

