CMPS 6640/4040: Computational Geometry Spring 2016

Convex Hulls

Carola Wenk

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them. How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape
 approximations for a set of points.

Convexity

- A set $C \subseteq \mathbf{R}^{2}$ is convex if for every two points $p, q \in C$ the line segment $\overline{p q}$ is fully contained in C.

convex

non-convex

Convex Hull

The convex hull $C H(P)$ of a point set $P \subseteq \mathbf{R}^{2}$ is the smallest convex set $C \supseteq P$. In other words $\mathrm{CH}(\mathrm{P})=\bigcap_{C \supseteq P} \mathrm{C}$.

Convex Hull

- Observation: $\mathrm{CH}(\mathrm{P})$ is the unique convex polygon whose vertices are points of P and which contains all points of P .

Goal: Compute $\mathrm{CH}(\mathrm{P})$.
What does that mean? How do we represent/store $\mathrm{CH}(\mathrm{P})$?
\Rightarrow Represent the convex hull as the sequence of points on the convex hull polygon (the boundary of the convex hull), in counter-clockwise order.

Orientation Test / Halfplane Test

- positive orientation (counter-clockwise)

- negative orientation (clockwise)

- zero orientation
- r lies on the line $\overrightarrow{\mathrm{pq}}$
- r lies to the left of $p q \bullet \vec{r}$ lies to the right of $\overrightarrow{p q}$
- $\operatorname{Orient}(p, q, r)=\operatorname{sign} \operatorname{det}\left(\begin{array}{lll}1 & p_{x} & p_{y} \\ 1 & q_{x} & q_{y} \\ 1 & r_{x} & r_{y}\end{array}\right)$, where $p=\left(p_{x}, p_{y}\right)$
- Can be computed in constant time

Graham's Scan

Another incremental algorithm

- Compute solution by incrementally adding points
- Add points in which order?
- Sorted by x-coordinate
- But convex hulls are cyclically ordered
\rightarrow Split convex hull into upper and lower part

Graham's LCH

```
Algorithm Grahams_LCH \((P)\) :
// Incrementally compute the lower convex hull of P
Input: Point set \(P \subseteq \mathbf{R}^{2}\)
Output: A stack \(S\) of vertices describing \(\mathrm{LCH}(P)\) in counter-clockwise order
\(\mathrm{O}(\mathrm{n} \log \mathrm{n}) \quad\) Sort \(P\) in increasing order by \(x\)-coordinate \(\rightarrow P=\left\{p_{1}, \ldots, p_{n}\right\}\)
S.push \(\left(p_{1}\right)\)
S.push \(\left(p_{2}\right)\)
for \(i=3\) to \(n\)
    while \(|S|>=2\) and orientation(S.second(), S.top(), \(\mathrm{p}_{\mathrm{i}}\), \()<=0 / /\) no left turn
        S.pop()
    S.push \(\left(p_{i}\right)\)
```

- Each element is appended only once, and hence only deleted at most once \Rightarrow the for-loop takes $\mathrm{O}(n)$ time
- $\mathrm{O}(n \log n)$ time total

Graham's Scan

Graham's Scan

Graham's Scan

Graham's Scan

Graham's Scan

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil n / 2\rceil$ points
- Recursively compute the convex hull of A

Recursively compute the convex hull of B

- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $\mathrm{O}(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A
 $b=$ leftmost point of B

while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do $\{$
while T not lower tangent to convex hull of A do \{ $a=a-1$
\}
while T not lower tangent to
convex hull of B do \{

A
B

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
$\mathrm{O}(n \log n)$ just once
$\mathrm{O}(1)$
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A
$T(n / 2)$

Recursively compute the convex hull of B

- Merge the two convex hulls
$T(n / 2)$
$\mathrm{O}(n)$

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $\mathrm{T}(n)=\Theta(n \log n)$

Master theorem

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

$$
\begin{aligned}
& \text { CASE 1: } f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right) . \\
& \text { CASE 2: } f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \\
& \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right) . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { and } a f(n / b) \leq c f(n) \\
& \quad \Rightarrow T(n)=\Theta(f(n)) .
\end{aligned}
$$

Convex hull: $a=2, b=2 \Rightarrow n^{\log b a}=n$
\Rightarrow CASE $2(k=0) \Rightarrow T(n)=\Theta(n \log n)$.

Jarvis’ March (Gift Wrapping)

- Runtime: $\mathrm{O}(h n)$, where $n=|P|$ and $h=\#$ points on $\mathrm{CH}(P)$
- Output-sensitive algorithm

Chan's Algorithm

- Runtime goal: $\mathrm{O}(n \log h)$, where $n=|P|$ and $h=\#$ points on $\mathrm{CH}(P)$
- Output-sensitive algorithm

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbf{R}^{2} ?

Lower Bound

- Comparison-based sorting of n elements takes $\Omega(n \log n)$ time.
- How can we use this lower bound to show a lower bound for the computation of the convex hull of n points in \mathbf{R}^{2} ?
- Devise a sorting algorithm which uses the convex hull and otherwise only linear-time operations
\Rightarrow Since this is a comparison-based sorting algorithm, the lower bound $\Omega(n \log n)$ applies
\Rightarrow Since all other operations need linear time, the convex hull algorithm has to take $\Omega(n \log n)$ time

CH_Sort

```
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull
    algorithm.
    Converts numbers to points, runs CH,
converts back to sorted sequence. */
Input: Set of numbers \(S \subseteq \mathbf{R}\)
Output: A list \(L\) of of numbers in \(S\) sorted in
    increasing order
\(P=\varnothing\)
for each \(s \in S\) insert \(\left(s, s^{2}\right)\) into \(P\)
\(L^{\prime}=\mathrm{CH}(P) / /\) compute convex hull
Find point \(p^{\prime} \in P\) with minimum x-coordinate
for each \(p=\left(p_{x}, p_{y}\right) \in L^{\prime}\), starting with \(p^{\prime}\),
    add \(p_{x}\) into \(L\)
return \(L\)
```


Convex Hull Summary

- Graham's scan:
- Divide-and-conquer:
- Jarvis' march (gift wrapping):
- Chan's algorithm:
- Lower bound:

