
1/12/16 CMPS 6640/4040: Computational Geometry 1

CMPS 6640/4040: Computational Geometry
Spring 2016

Convex Hulls
Carola Wenk

1/12/16 CMPS 6640/4040: Computational Geometry 2

Convex Hull Problem

 Given a set of pins on a pinboard

and a rubber band around them.

How does the rubber band look
when it snaps tight?

 The convex hull of a point set is
one of the simplest shape
approximations for a set of points.

1/12/16 CMPS 6640/4040: Computational Geometry 3

Convexity

A set C R2 is convex if for every two points p,qC the line
segment pq is fully contained in C.

convex non-convex

1/12/16 CMPS 6640/4040: Computational Geometry 4

Convex Hull

 The convex hull CH(P) of a point set P R2 is the smallest
convex set C P. In other words CH(P) = C .

C P
C convex

P

1/12/16 CMPS 6640/4040: Computational Geometry 5

Convex Hull
 Observation: CH(P) is the unique convex polygon whose
vertices are points of P and which contains all points of P.

0

2

1

3
4

6

5

 Goal: Compute CH(P).
What does that mean? How do we represent/store CH(P)?

 Represent the convex hull as the sequence of points on
the convex hull polygon (the boundary of the convex hull),
in counter-clockwise order.

1/12/16 CMPS 6640/4040: Computational Geometry 6

Orientation Test / Halfplane Test

p

q

r

r

q

p

• positive orientation
(counter-clockwise)

• r lies to the left of pq

• negative orientation
(clockwise)

• r lies to the right of pq

r
q

p
• zero orientation
• r lies on the line pq

• Orient(p,q,r) = sign det

• Can be computed in constant time

1 px py
1 qx qy
1 rx ry

,where p = (px,py)

1/12/16 CMPS 6640/4040: Computational Geometry 7

Graham’s Scan

Another incremental algorithm
– Compute solution by incrementally adding points
– Add points in which order?

• Sorted by x-coordinate
• But convex hulls are cyclically ordered
 Split convex hull into upper and lower part

upper convex hull UCH(P)

lower convex hull LCH(P)

1/12/16 CMPS 6640/4040: Computational Geometry 8

Graham’s LCH
Algorithm Grahams_LCH(P):
// Incrementally compute the lower convex hull of P
Input: Point set P R2

Output: A stack S of vertices describing LCH(P) in counter-clockwise order

Sort P in increasing order by x-coordinate P = {p1,…,pn}
S.push(p1)
S.push(p2)
for i=3 to n

while |S|>=2 and orientation(S.second(), S.top(), pi,) <= 0 // no left turn
S.pop()

S.push(pi)

• Each element is appended only once, and hence only deleted at
most once the for-loop takes O(n) time

• O(n log n) time total

O(n log n)

O(n)

1/12/16 CMPS 6640/4040: Computational Geometry 9

Graham’s Scan
p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

p2

No left turn

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

Left turn

pop push

p3
push

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

p3

p4

No left turn

pop

1/12/16 CMPS 6640/4040: Computational Geometry 10

Graham’s Scan
p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

p3

No left turn

pop

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

push

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

Left turn

pushp5

p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

Left turn

push
p1

p5
p5

p6p6

p7

1/12/16 CMPS 6640/4040: Computational Geometry 11

Graham’s Scan
p7

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

No left turn

p1

p5

p6

p7 pop
p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

Left turn

p1

p5

p6 push

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

No left turn

p1

p5

p6

p8

pop
p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

No left turn

p1

p5

p6 pop

1/12/16 CMPS 6640/4040: Computational Geometry 12

Graham’s Scan

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

Left turn

p1

p5

push
p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

Left turn

p1

p5

pushp9

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

No left turn

p1

p5

popp9

p10

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

No left turn

p1

p5

popp9

1/12/16 CMPS 6640/4040: Computational Geometry 13

Graham’s Scan

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

Left turn

p1

p5

push

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

Left turn

p1

p5

pushp11

p1

p2

p3

p4

p5

p6

p8

p9

p10

p11

p12

p1

p5

p11

p12

1/12/16 CMPS 6640/4040: Computational Geometry 14

Convex Hull: Divide & Conquer
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

A B

1/12/16 CMPS 6640/4040: Computational Geometry 15

Merging
 Find upper and lower tangent

 With those tangents the convex hull
of AB can be computed from the
convex hulls of A and the convex hull
of B in O(n) linear time

A B

1/12/16 CMPS 6640/4040: Computational Geometry 16

check with
orientation test

right turn
left turn

Finding the lower tangent
a = rightmost point of A
b = leftmost point of B
while T=ab not lower tangent to both

convex hulls of A and B do{
while T not lower tangent to
convex hull of A do{

a=a-1
}
while T not lower tangent to
convex hull of B do{
b=b+1

}
}

A B
0

a=2

1

5

3

4

0

1

2

3

4=b

5

6
7

1/12/16 CMPS 6640/4040: Computational Geometry 17

Convex Hull: Runtime
 Preprocessing: sort the points by x-
coordinate

 Divide the set of points into two
sets A and B:

 A contains the left n/2 points,

 B contains the right n/2 points

Recursively compute the convex
hull of A

Recursively compute the convex
hull of B

 Merge the two convex hulls

O(n log n) just once

O(1)

T(n/2)

T(n/2)

O(n)

1/12/16 CMPS 6640/4040: Computational Geometry 18

Convex Hull: Runtime
 Runtime Recurrence:

T(n) = 2 T(n/2) + cn

 Solves to T(n) = (n log n)

1/12/16 CMPS 6640/4040: Computational Geometry 19

Master theorem
T(n) = a T(n/b) + f (n)

CASE 1: f (n) = O(nlogba –)
 T(n) = (nlogba) .

CASE 2: f (n) = (nlogba logkn)
 T(n) = (nlogba logk+1n) .

CASE 3: f (n) = (nlogba +) and a f (n/b) c f (n)
 T(n) = (f (n)) .

,
where a 1, b > 1, and f is asymptotically positive.

Convex hull: a = 2, b = 2 nlogba = n
 CASE 2 (k = 0) T(n) = (n log n) .

1/12/16 CMPS 6640/4040: Computational Geometry 20

Jarvis’ March (Gift Wrapping)
Algorithm Giftwrapping_CH(P):
// Compute CH(P) by incrementally inserting points from left to right
Input: Point set P R2

Output: List q1, q2,… of vertices in counter-clockwise order around CH(P)
q1 = point in P with smallest y (if ties, with smallest x)
q2 = point in P with smallest angle to horizontal line through q1
i = 2
do {

i++
qi = point with smallest angle to line through qi-2 and qi-1

} while qi ≠ q1

q1

q2

q3

• Runtime: O(hn) , where n = |P| and h = #points on CH(P)
• Output-sensitive algorithm

1/12/16 CMPS 6640/4040: Computational Geometry 21

Chan’s Algorithm
• Runtime goal: O(n log h) , where n = |P| and h = #points on CH(P)
• Output-sensitive algorithm

1/12/16 CMPS 6640/4040: Computational Geometry 22

Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time.
• How can we use this lower bound to show a lower

bound for the computation of the convex hull of n
points in R2?

1/12/16 CMPS 6640/4040: Computational Geometry 23

Lower Bound
• Comparison-based sorting of n elements takes

(n log n) time.
• How can we use this lower bound to show a lower

bound for the computation of the convex hull of n
points in R2?

• Devise a sorting algorithm which uses the convex
hull and otherwise only linear-time operations
 Since this is a comparison-based sorting algorithm, the

lower bound (n log n) applies
 Since all other operations need linear time, the convex

hull algorithm has to take (n log n) time

1/12/16 CMPS 6640/4040: Computational Geometry 24

CH_Sort
Algorithm CH_Sort(S):
/* Sorts a set of numbers using a convex hull

algorithm.
Converts numbers to points, runs CH,
converts back to sorted sequence. */

Input: Set of numbers S R
Output: A list L of of numbers in S sorted in

increasing order
P=
for each sS insert (s,s2) into P
L’ = CH(P) // compute convex hull
Find point p’P with minimum x-coordinate
for each p=(px,py)L’, starting with p’,

add px into L
return L

s2

s
-2-4 1 4 5

1/12/16 CMPS 6640/4040: Computational Geometry 25

Convex Hull Summary
• Graham’s scan: O(n log n)
• Divide-and-conquer: O(n log n)
• Jarvis’ march (gift wrapping): O(nh)
• Chan’s algorithm: O(n log h)

• Lower bound: (n log n)

