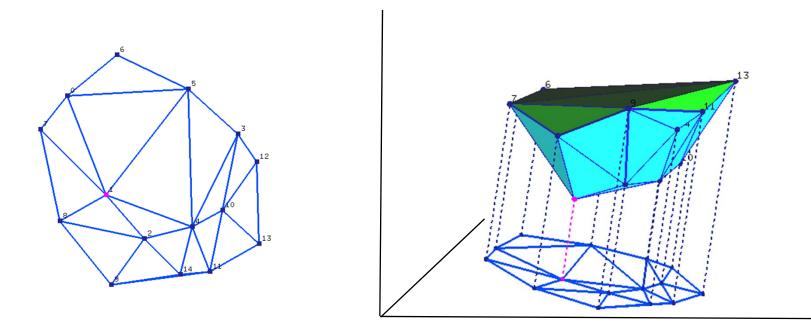
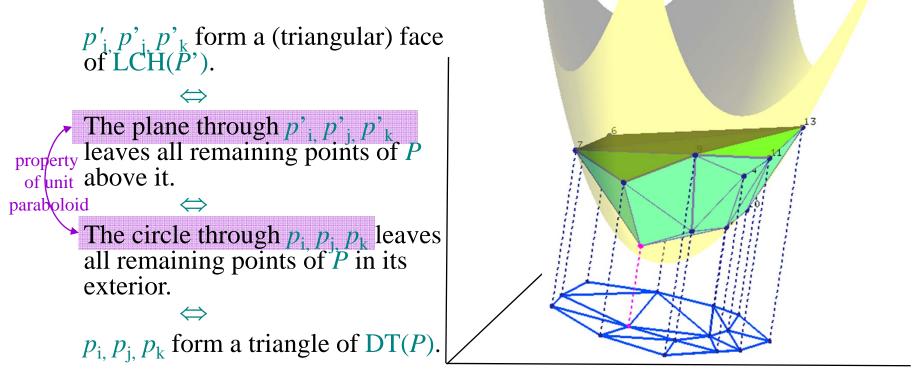

Theorem: Let $P = \{p_1, \dots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a^2_i + b^2_i)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then DT(P) is the orthogonal projection onto the plane z=0 of the lower convex hull of $P' = \{p'_1, \dots, p'_n\}$.


Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \dots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a^2_i + b^2_i)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then DT(P) is the orthogonal projection onto the plane z=0 of the lower convex hull of $P' = \{p'_1, \dots, p'_n\}$.


Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \dots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a_i^2 + b_i^2)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then DT(P) is the orthogonal projection onto the plane z=0 of the lower convex hull of $P' = \{p'_1, \dots, p'_n\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

Theorem: Let $P = \{p_1, \dots, p_n\}$ with $p_i = (a_i, b_i, 0)$. Let $p'_i = (a_i, b_i, a^2_i + b^2_i)$ be the vertical projection of each point p_i onto the paraboloid $z = x^2 + y^2$. Then DT(P) is the orthogonal projection onto the plane z=0 of the lower convex hull of $P' = \{p'_1, \dots, p'_n\}$.

Slide adapted from slides by Vera Sacristan.