DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{\prime}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a_{i}^{2}+b^{2}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p^{\prime}{ }_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{\prime}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a_{i}^{2}+b^{2}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}^{\prime}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a_{i}^{2}+b^{2}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then DT (P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p_{1}, \ldots, p^{\prime}{ }_{n}\right\}$.

Pictures generated with Hull2VD tool available at http://www.cs.mtu.edu/~shene/NSF-2/DM2-BETA

DT and 3D CH

Theorem: Let $P=\left\{p_{1}, \ldots, p_{n}\right\}$ with $p_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, 0\right)$. Let $p_{\mathrm{i}}{ }_{\mathrm{i}}=\left(a_{\mathrm{i}}, b_{\mathrm{i}}, a^{2}{ }_{\mathrm{i}}+b^{2}{ }_{\mathrm{i}}\right)$ be the vertical projection of each point p_{i} onto the paraboloid $z=x^{2}+y^{2}$. Then DT(P) is the orthogonal projection onto the plane $z=0$ of the lower convex hull of $P^{\prime}=\left\{p_{1}, \ldots, p_{n}{ }_{n}\right\}$.
$p_{\dot{d},}^{\prime} p^{\prime}{ }_{j} p^{\prime}{ }_{k}$ form a (triangular) face of ${ }^{\prime} C^{\prime}{ }^{\prime}\left(P^{\prime}\right)$.

The plane through $p_{i}^{\prime}, p_{i}^{\prime}, p^{\prime}$
property leaves all remaining points of P of unit above it. paraboloid

The circle through $p_{\mathrm{i}}, p_{\mathrm{j}} p_{\mathrm{k}}$ leaves all remaining points of P in its exterior.
\Leftrightarrow
$p_{\mathrm{i},} p_{\mathrm{j}}, p_{\mathrm{k}}$ form a triangle of $\mathrm{DT}(P)$.

Slide adapted from slides by Vera Sacristan.

