CMPS 6640/4040 Computational Geometry Spring 2016

Delaunay Triangulations Carola Wenk

Based on: <u>Computational Geometry: Algorithms and Applications</u>

Martin Martin State

CMPS 6640/4040 Computational Geometry

Applications of DT

- All nearest neighbors: Find for each $p \in P$ its nearest neighbor $q \in P$; $q \neq p$.
 - Empty circle property: p,q∈P are connected by an edge in DT(P)
 ⇔ there exists an empty circle passing through p and p.
 Proof: "⇒": For the Delaunay edge pq there must be a Voronoi edge. Center a circle through p and q at any point on the Voronoi edge, this circle must be empty.
 "⇐": If there is an empty circle through p and q, then its center c

 \leftarrow : If there is an empty circle through p and q, then its center c has to lie on the Voronoi edge because it is equidistant to p and q and there is no site closer to c.

- **Claim:** Every $p \in P$ is adjacent in DT(P) to its nearest neighbor $q \in P$. **Proof:** The circle centered at p with q on its boundary has to be empty, so the circle with diameter pq is empty and pq is a Delaunay edge.
- Algorithm: Find all nearest neighbors in O(n) time: Check for each $p \in P$ all points connected to p with a Delaunay edge.
- Minimum spanning tree: The edges of every Euclidean minimum spanning tree of P are a subset of the edges of DT(P).

q

р

Randomized Incremental Construction of DT(P)

- Start with a large triangle containing *P*.
- Insert points of *P* incrementally:
 - Find the containing triangle
 - Add new edges
 - Flip all illegal edges until every edge is legal.

Randomized Incremental Construction of DT(P)

- An edge can become illegal only if one of its incident triangles changes.
- Check only edges of new triangles.
- Every new edge created is incident to p_r .
- Every old edge is legal (if p_r is on on one of the incident triangles, the edge would have been flipped if it were illegal).
- Every new edge is legal (since it has been created from flipping a legal edge).

Pseudo Code

Algorithm DELAUNAYTRIANGULATION(P)

Input. A set P of n+1 points in the plane.

Output. A Delaunay triangulation of P.

- 1. Let p_0 be the lexicographically highest point of P, that is, the rightmost among the points with largest y-coordinate.
- 2. Let p_{-1} and p_{-2} be two points in \mathbb{R}^2 sufficiently far away and such that P is contained in the triangle $p_0p_{-1}p_{-2}$.
- 3. Initialize T as the triangulation consisting of the single triangle $p_0p_{-1}p_{-2}$.
- 4. Compute a random permutation p_1, p_2, \ldots, p_n of $P \setminus \{p_0\}$.
- 5. for $r \leftarrow 1$ to n
- 6. **do** (* Insert p_r into \mathfrak{T} : *)
- 7. Find a triangle $p_i p_j p_k \in \mathcal{T}$ containing p_r .
- 8. **if** p_r lies in the interior of the triangle $p_i p_j p_k$
- 9. **then** Add edges from p_r to the three vertices of $p_i p_j p_k$, thereby splitting $p_i p_j p_k$ into three triangles.
- 10. LEGALIZEEDGE $(p_r, \overline{p_i p_j}, \mathcal{T})$
- 11. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathfrak{T})$
- 12. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathcal{T})$
- else (* p_r lies on an edge of p_ip_jp_k, say the edge p_ip_j *)
 Add edges from p_r to p_k and to the third vertex p_l of the other triangle that is incident to p_ip_j, thereby splitting the two triangles incident to p_ip_j into four triangles.
- 15. LEGALIZEEDGE $(p_r, \overline{p_i p_l}, \widehat{\mathfrak{I}})$
- 16. LEGALIZEEDGE $(p_r, \overline{p_l p_j}, \mathfrak{T})$
- 17. LEGALIZEEDGE $(p_r, \overline{p_j p_k}, \mathcal{T})$
- 18. LEGALIZEEDGE $(p_r, \overline{p_k p_i}, \mathfrak{T})$
- 19. Discard p_{-1} and p_{-2} with all their incident edges from \mathcal{T} .

20. return T

$\text{LegalizeEdge}(p_r, \overline{p_i p_j}, \mathfrak{T})$

- 1. (* The point being inserted is p_r , and $\overline{p_i p_j}$ is the edge of \mathcal{T} that may need to be flipped. *)
- 2. if $\overline{p_i p_j}$ is illegal

3.

4.

5.

6.

- then Let $p_i p_j p_k$ be the triangle adjacent to $p_r p_i p_j$ along $\overline{p_i p_j}$.
 - (* Flip $\overline{p_i p_j}$: *) Replace $\overline{p_i p_j}$ with $\overline{p_r p_k}$.
 - LEGALIZEEDGE $(p_r, \overline{p_i p_k}, \mathcal{T})$
 - LEGALIZEEDGE $(p_r, \overline{p_k p_j}, \mathcal{T})$

History

The algorithm stores the history of the constructed triangles. This allows to easily locate the triangle containing a new point by following pointers.

• Division of a triangle:

Store pointers from the old triangle to the three new triangles.

• Flip:

Store pointers from both old triangles to both new triangles.