
1/28/16 CMPS 6640/4040 Computational Geometry 1

CMPS 6640/4040 Computational Geometry
Spring 2016

3D Convex Hulls
Carola Wenk
(based on BCKO)

3D CH: Problem Statement

• Given a set compute

• Use a DCEL to represent the boundary

Images from http://xlr8r.info/

Clarkson & Shor’s Randomized
Incremental Construction (RIC)

1. Choose 4 points in that do not lie in a common plane.
(Otherwise apply planar CH algorithm.)
Wlog, let these points be

2. Let be a random permutation of the remaining
points in .

3. Define for
for r ; ; ++

Compute by inserting into

Visible and Invisible Regions
• If , then
• Now, consider the other case

Look at
from
 visible region and

invisible region

The visible region and invisible region are connected
regions on , separated by the horizon.
The horizon is a closed curve consisting of edges on

Horizon

Project onto a plane with as the center
of projection.
 Convex polygon that “equals” the horizon.

Visibility

A facet on is visible from
: lies in , where is the plane containing ,
and is the open halfspace that does not contain

Storage Data Structure
Store the boundary of , and of all intermediate

, as a DCEL. The vertices are 3D points.

Wlog, half-edges bounding a face that is seen from the
outside of the polytope form a counter-clockwise
cycle.

Compute from

• Keep invisible facets
• Replace visible facets
 How to find all visible facets in time linear to
their number?
(time is trivial but leads to an
algorithm.)

Conflict/Visibility Lists
Maintain conflict lists for each on and

for :
consists of all points that

can see
consists of all facets of

visible from
is in conflict with because and

cannot be part of the same convex hull

Conflict Graph
Store all conflict lists in the conflict graph:
• Bipartite graph
• Node for every point in that is

not inserted yet
• Node for every facet of
• Arc between and p if is in

conflict with (i.e., visible from)

conflicts

Maintaining the Conflict Graph
• Initialize conflict graph for in linear time
• Update after adding :

– Discard from :
• All neighbors of in . These are the facets visible from .
•

– Insert nodes in for newly created facets (those facets
which connect to the horizon)

– Find conflict lists for each newly created facet :
• A point that sees must also see 	
• But then must have seen one of the faces

or 	 incident to in conv P 	
 Test all points in the conflict lists of and 	

Algorithm (part 1)

Algorithm (part 2)

Algorithm (part 1)

)

| |
Face can only be
deleted if it has been
created.
 Delete at most once

Algorithm (part 2)

| |
∈

Charge	to	node
and	arc	creation

Need to bound:
• | |
• | | where the summation is over all horizon edges

that ever appear during the algorithm
log

proof in book

Backwards Analysis
Lemma: The expected number of facets created by the algorithm,
∑ | | , is at most 6 20.

Proof:
= # facets connecting to its horizon on

(these are the newly created facets)
= # facets that disappear when removing from
=: deg	 , degree of in

 deg , ∑ deg ,

[(∑ deg ,) -12]

[2 3 6 12 	 = 6

Thus 4 ∑ | | 4 6 4 6 20

Total degree of , … , is
at least 12

Convex Hull Runtime
• Theorem: The convex hull of a set of points in

can be computed in randomized expected
time.

• Theorem (higher dimensions): The complexity of the
convex hull of points in is / .
It can be computed in randomized expected

/ time.

