# CMPS 6640/4040 Computational Geometry Spring 2016 



## 3D Convex Hulls

Carola Wenk
(based on BCKO)

## 3D CH: Problem Statement



Images from http://xlr8r.info/

- Given a set $P=\left\{p_{1}, \ldots, p_{n}\right\} \subseteq \mathbb{R}^{3}$, compute $\operatorname{conv}(P)$
- Use a DCEL to represent the boundary $\partial \operatorname{conv}(P)$


## Clarkson \& Shor's Randomized Incremental Construction (RIC)

1. Choose 4 points in $P$ that do not lie in a common plane. (Otherwise apply planar CH algorithm.) Wlog, let these points be $p_{1}, p_{2}, p_{3}, p_{4}$
2. Let $p_{5}, \ldots, p_{n}$ be a random permutation of the remaining points in $P$.
3. Define $P_{r}=\left\{p_{1}, \ldots, p_{r}\right\}$ for $r \geq 1$ for $\mathrm{r}=5$; $r \leq n$; $r++$

Compute $\operatorname{conv}\left(P_{r}\right)$ by inserting $p_{r}$ into $\operatorname{conv}\left(P_{r-1}\right)$

## Visible and Invisible Regions

- If $p_{r} \in \operatorname{conv}\left(P_{r-1}\right)$, then $\operatorname{conv}\left(\mathrm{P}_{\mathrm{r}}\right)=\operatorname{conv}\left(P_{r-1}\right)$
- Now, consider the other case $p_{r} \notin \operatorname{conv}\left(P_{r-1}\right)$


Look at $\operatorname{conv}\left(P_{r-1}\right)$ from $p_{r}$
$\Rightarrow$ visible region and invisible region

The visible region and invisible region are connected regions on $\operatorname{conv}\left(P_{r-1}\right)$, separated by the horizon.
The horizon is a closed curve consisting of edges on $\operatorname{conv}\left(P_{r-1}\right)$.

## Horizon



Project $\operatorname{conv}\left(P_{r-1}\right)$ onto a plane with $p_{r}$ as the center of projection.
$\Rightarrow$ Convex polygon that "equals" the horizon.

## Visibility



A facet $f$ on $\operatorname{conv}\left(P_{r-1}\right)$ is visible from $p_{r}$
$: \Leftrightarrow p_{r}$ lies in $h_{f}^{+}$, where $h_{f}$ is the plane containing $f$, and $h_{f}^{+}$is the open halfspace that does not contain $\operatorname{conv}\left(P_{r-1}\right)$

## Storage Data Structure

Store the boundary of $\operatorname{conv}(P)$, and of all intermediate $\operatorname{conv}\left(P_{r}\right)$, as a DCEL. The vertices are 3D points.

Wlog, half-edges bounding a face that is seen from the outside of the polytope form a counter-clockwise cycle.


## Compute $\operatorname{conv}\left(P_{r}\right)$ from $\operatorname{conv}\left(P_{r-1}\right)$



- Keep invisible facets
- Replace visible facets
$\Rightarrow$ How to find all visible facets in time linear to their number?
$\left(O(r-1)\right.$ time is trivial but leads to an $O\left(n^{2}\right)$ algorithm.)


## Conflict/Visibility Lists

Maintain conflict lists for each $f$ on $\operatorname{conv}\left(P_{r-1}\right)$ and $p_{t}$ for $t>r$ :

- $P_{\text {conflict }}(f) \subseteq\left\{p_{r}, \ldots, p_{n}\right\}$ consists of all points that can see $f$
- $F_{\text {conflict }}\left(p_{t}\right)$ consists of all facets of $\operatorname{conv}\left(P_{r-1}\right)$ visible from $p_{t}$
- $p \in P_{\text {conflict }}(f)$ is in conflict with $f$ because $p$ and $f$ cannot be part of the same convex hull



## Conflict Graph

Store all conflict lists in the conflict graph:

- Bipartite graph
- Node for every point in $P$ that is not inserted yet
- Node for every facet of $\operatorname{conv}\left(P_{r-1}\right)$
- Arc between $f$ and p if $f$ is in conflict with (i.e., visible from) $p$
conflicts

$P_{\text {conflict }}(f)$


## Maintaining the Conflict Graph

- Initialize conflict graph $G$ for $\operatorname{conv}\left(P_{4}\right)$ in linear time
- Update $G$ after adding $p_{r}$ :
- Discard from $G$ :
- All neighbors of $p_{r}$ in $G$. These are the facets visible from $p_{r}$.
- $p_{r}$
- Insert nodes in $G$ for newly created facets (those facets which connect $p_{r}$ to the horizon)
- Find conflict lists for each newly created facet $f$ :
- A point $p_{t}$ that sees $f$ must also see $e$
- But then $p_{t}$ must have seen one of the faces $f_{1}$ or $f_{2}$ incident to $e$ in $\operatorname{conv}\left(\mathrm{P}_{r-1}\right)$
$\Rightarrow$ Test all points in the conflict lists of $f_{1}$ and $f_{2}$




## Algorithm CONVEXHULL $(P)$

Input. A set $P$ of $n$ points in three-space.
Output. The convex hull $\mathcal{C H} \mathcal{H}(P)$ of $P$.

1. Find four points $p_{1}, p_{2}, p_{3}, p_{4}$ in $P$ that form a tetrahedron.
2. $\mathcal{C} \leftarrow \mathcal{C} \mathcal{H}\left(\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}\right)$
3. Compute a random permutation $p_{5}, p_{6}, \ldots, p_{n}$ of the remaining points.
4. Initialize the conflict graph $\mathcal{G}$ with all visible pairs $\left(p_{t}, f\right)$, where $f$ is a facet of $\mathcal{C}$ and $t>4$.
5. for $r \leftarrow 5$ to $n$
6. do ( $*$ Insert $p_{r}$ into $\mathcal{C}: *$ )
7. if $F_{\text {conflict }}\left(p_{r}\right)$ is not empty ( $*$ that is, $p_{r}$ lies outside $\mathcal{C} *$ )
8. then Delfte all facets in $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{C}$.
9. Walk along the boundary of the visible region of $p_{r}$ (which consists exactly of the facets in $F_{\text {conflict }}\left(p_{r}\right)$ ) and create a list $\mathcal{L}$ of horizon edges in order.
10. for all $e \in \mathcal{L}$
11. do Connect $e$ to $p_{r}$ by creating a triangular facet $f$.
12. 
13. 

if $f$ is coplanar with its neighbor facet $f^{\prime}$ along $e$
then Merge $f$ and $f^{\prime}$ into one facet, whose conflict list is the same as that of $f^{\prime}$.

14.
15.
16.
17.
18.
19.
20.

else (* Determine conflicts for $f: *$ )
Create a node for $f$ in $\mathcal{G}$.
Let $f_{1}$ and $f_{2}$ be the facets incident to $e$ in the old convex hull.
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$
for all points $p \in P(e)$
do If $f$ is visible from $p$, add $(p, f)$ to $\mathcal{G}$.
Delete the node corresponding to $p_{r}$ and the nodes corresponding to the facets in $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{G}$, together with their incident arcs.
21. return $\mathcal{C}$



## else ( $*$ Determine conflicts for $f: *$ ) Create a node for $f$ in $\mathcal{G}$.

Let $f_{1}$ and $f_{2}$ be the facets incident to $e$ in the old convex hull.
$P(e) \leftarrow P_{\text {conflict }}\left(f_{1}\right) \cup P_{\text {conflict }}\left(f_{2}\right)$ for all points $p \in P(e)$
do If $f$ is visible from $p$, add $(p, f)$ to $\mathcal{G}$.
Delete the node corresponding to $p_{r}$ and the nodes corresponding to the facets in $F_{\text {conflict }}\left(p_{r}\right)$ from $\mathcal{G}$, together with their incident arcs.
21. return $\mathcal{C}$

Need to bound:
$O(n) \cdot E\left(\sum_{r=5}^{n}\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)$
$O(n \log n) \cdot E\left(\sum_{e}|P(e)|\right)$ where the summation is over all horizon edges
proof in book that ever appear during the algorithm

## Backwards Analysis

Lemma: The expected number of facets created by the algorithm, $E\left(\sum_{r=1}^{n}\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right)$, is at most $6 n-20$.
Proof: $\left|F_{\text {conflict }}\left(p_{r}\right)\right|$
$=\#$ facets connecting $p_{r}$ to its horizon on $\operatorname{conv}\left(P_{r-1}\right)$ (these are the newly created facets)
$=$ \# facets that disappear when removing $p_{r}$ from $\operatorname{conv}\left(P_{r}\right)$
$=: \operatorname{deg}\left(p_{r}, \operatorname{conv}\left(P_{r}\right)\right) \quad$ degree of $p_{r}$ in $\operatorname{conv}\left(P_{r}\right)$
$\Rightarrow E\left(\operatorname{deg}\left(p_{r}, \operatorname{conv}\left(P_{r}\right)\right)=\frac{1}{r-4} \sum_{i=5}^{r} \operatorname{deg}\left(p_{i}, \operatorname{conv}\left(P_{r}\right)\right)\right.$
$\leq \frac{1}{r-4}\left[\left(\sum_{i=1}^{r} \operatorname{deg}\left(p_{i}, \operatorname{conv}\left(P_{r}\right)\right)\right)-12\right] \quad \begin{aligned} & \text { Total degree of } p_{1}, \ldots, p_{4} \text { is } \\ & \text { at least } 12\end{aligned}$
$\leq \frac{1}{r-4}[2(3 r-6)-12]=\frac{6 r-12-12}{r-4}=6$
Thus $4+E\left(\sum_{r=5}^{n}\left|F_{\text {conflict }}\left(p_{r}\right)\right|\right) \leq 4+6(n-4)=6 n-20$

## Convex Hull Runtime

- Theorem: The convex hull of a set of $n$ points in $\mathbb{R}^{3}$ can be computed in randomized expected $O(n \log n)$ time.
- Theorem (higher dimensions): The complexity of the convex hull of $n$ points in $\mathbb{R}^{d}$ is $\Theta\left(n^{\mid d / 2]}\right)$. It can be computed in randomized expected $O\left(n^{\lfloor d / 2\rfloor}+n \log n\right)$ time.

