CMPS 6640/4040 Computational Geometry Spring 2016

 $conv(P_{r-1})$

3D Convex Hulls

Carola Wenk

(based on BCKO)

CMPS 6640/4040 Computational Geometry

3D CH: Problem Statement

Images from http://xlr8r.info/

- Given a set $P = \{p_1, \dots, p_n\} \subseteq \mathbb{R}^3$, compute conv(P)
- Use a DCEL to represent the boundary $\partial conv(P)$

Clarkson & Shor's Randomized Incremental Construction (RIC)

- 1. Choose 4 points in *P* that do not lie in a common plane. (Otherwise apply planar CH algorithm.) Wlog, let these points be p_1, p_2, p_3, p_4
- 2. Let $p_5, ..., p_n$ be a random permutation of the remaining points in *P*.
- 3. Define $P_r = \{p_1, \dots, p_r\}$ for $r \ge 1$ for r = 5; $r \le n$; r + +Compute $conv(P_r)$ by inserting p_r into $conv(P_{r-1})$

Visible and Invisible Regions

• If $p_r \in conv(P_{r-1})$, then $conv(P_r) = conv(P_{r-1})$

• Now, consider the other case $p_r \notin conv(P_{r-1})$

Look at $conv(P_{r-1})$ from p_r \Rightarrow visible region and invisible region

The visible region and invisible region are connected regions on $conv(P_{r-1})$, separated by the *horizon*. The horizon is a closed curve consisting of edges on $conv(P_{r-1})$.

Project $conv(P_{r-1})$ onto a plane with p_r as the center of projection.

 \Rightarrow Convex polygon that "equals" the horizon.

Visibility

A facet f on $conv(P_{r-1})$ is *visible* from p_r : $\Leftrightarrow p_r$ lies in h_f^+ , where h_f is the plane containing f, and h_f^+ is the open halfspace that does not contain $conv(P_{r-1})$

Storage Data Structure

Store the boundary of conv(P), and of all intermediate $conv(P_r)$, as a DCEL. The vertices are 3D points.

Wlog, half-edges bounding a face that is seen from the outside of the polytope form a counter-clockwise cycle.

Compute $conv(P_r)$ **from** $conv(P_{r-1})$

- Keep invisible facets
- Replace visible facets

 \Rightarrow How to find all visible facets in time linear to their number?

(O(r-1)) time is trivial but leads to an $O(n^2)$ algorithm.)

Conflict/Visibility Lists

Maintain conflict lists for each f on $conv(P_{r-1})$ and p_t for t > r:

- $P_{conflict}(f) \subseteq \{p_r, ..., p_n\}$ consists of all points that can see f
- *F_{conflict}*(*p_t*) consists of all facets of *conv*(*P_{r-1}*) visible from *p_t*
- *p* ∈ *P*_{conflict}(*f*) is in conflict with *f* because *p* and
 f cannot be part of the same convex hull

Conflict Graph

Store all conflict lists in the conflict graph:

- Bipartite graph
- Node for every point in *P* that is not inserted yet
- Node for every facet of $conv(P_{r-1})$
- Arc between *f* and p if *f* is *in conflict with* (i.e., visible from) *p*

Maintaining the Conflict Graph

- Initialize conflict graph G for $conv(P_4)$ in linear time
- Update G after adding p_r :
 - Discard from *G*:
 - All neighbors of p_r in G. These are the facets visible from p_r .
 - *p*_r
 - Insert nodes in *G* for newly created facets (those facets which connect p_r to the horizon)
 - Find conflict lists for each newly created facet *f* :
 - A point p_t that sees f must also see e
 - But then p_t must have seen one of the faces f_1 or f_2 incident to e in conv(P_{r-1})
 - \Rightarrow Test all points in the conflict lists of f_1 and f_2

Algorithm (part 1)

$conv(P_{r-1})$

 $conv(P_r)$

Algorithm CONVEXHULL(P)

Input. A set *P* of *n* points in three-space.

Output. The convex hull CH(P) of *P*.

- 1. Find four points p_1, p_2, p_3, p_4 in P that form a tetrahedron.
- 2. $\mathcal{C} \leftarrow \mathcal{CH}(\{p_1, p_2, p_3, p_4\})$
- 3. Compute a random permutation p_5, p_6, \ldots, p_n of the remaining points.
- 4. Initialize the conflict graph \mathcal{G} with all visible pairs (p_t, f) , where f is a facet of \mathcal{C} and t > 4.

```
5. for r \leftarrow 5 to n
```

- 6. **do** (* Insert p_r into \mathcal{C} : *)
- 7. **if** $F_{\text{conflict}}(p_r)$ is not empty (* that is, p_r lies outside \mathcal{C} *)
- 8. **then** Delete all facets in $F_{\text{conflict}}(p_r)$ from \mathcal{C} .
- 9. Walk along the boundary of the visible region of p_r (which consists exactly of the facets in $F_{\text{conflict}}(p_r)$) and create a list \mathcal{L} of horizon edges in order.
- 10. **for** all $e \in \mathcal{L}$
- 11. **do** Connect e to p_r by creating a triangular facet f.
- 12.if f is coplanar with its neighbor facet f' along e13.then Merge f and f' into one facet, whose conflict
list is the same as that of f'.

$conv(P_{r-1})$

14.	else (* Determine conflicts for f : *)
15.	e Create a node for f in \mathcal{G} .
16.	f_1 Let f_1 and f_2 be the facets incident to e in the
	p_r old convex hull.
17.	$ P(e) \leftarrow P_{\text{conflict}}(f_1) \cup P_{\text{conflict}}(f_2) $
18.	for all points $p \in P(e)$
19.	do If f is visible from p , add (p, f) to \mathcal{G} .
20.	Delete the node corresponding to p_r and the nodes corre-
	sponding to the facets in $F_{\text{conflict}}(p_r)$ from G, together with
	their incident arcs.
21	eturn C

$conv(P_{r-1})$	p_r Algorithm (part 1) p_r
	Algorithm CONVEXHULL(P) $CONV(P_r)$
	<i>Input</i> . A set <i>P</i> of <i>n</i> points in three-space.
	<i>Output.</i> The convex hull $CH(P)$ of P .
٢	1. Find four points p_1, p_2, p_3, p_4 in P that form a tetrahedron.
O(2. $\mathcal{C} \leftarrow \mathcal{CH}(\{p_1, p_2, p_3, p_4\})$
O(n)	3. Compute a random permutation p_5, p_6, \ldots, p_n of the remaining points.
	4. Initialize the conflict graph \mathcal{G} with all visible pairs (p_t, f) , where f is a
	facet of \mathcal{C} and $t > 4$.
	5. for $r \leftarrow 5$ to n
	6. do (* Insert p_r into \mathbb{C} : *)
Γ	7. if $F_{\text{conflict}}(p_r)$ is not empty (* that is, p_r lies outside \mathcal{C} *)
	8. then Delete all facets in $F_{\text{conflict}}(p_r)$ from C.
	9. Walk along the boundary of the visible region of p_r (which
	consists exactly of the facets in $F_{\text{conflict}}(p_r)$) and create a list
$O(F_{conflict}(p_r))$	\mathcal{L} of horizon edges in order.
Face can only be	10. for all $e \in \mathcal{L}$
deleted if it has been	11. do Connect <i>e</i> to p_r by creating a triangular facet <i>f</i> .
created	12. If f is coplanar with its neighbor facet f' along e
N Doloto et most once	15. then Merge f and f' into one facet, whose conflict
\rightarrow Defete at most once	list is the same as that of f' .

 $conv(P_{r-1})$

do If f is visible from p, add (p, f) to \mathcal{G} . Delete the node corresponding to p_r and the nodes corresponding to the facets in $F_{\text{conflict}}(p_r)$ from \mathcal{G} , together with their incident arcs.

21. return C

Need to bound:

$O(n) \bullet E(\sum_{r=5}^{n} |F_{conflict}(p_r)|)$

proof in book

 $O(n \log n) \bullet E(\sum_{e} |P(e)|)$ where the summation is over all horizon edges that ever appear during the algorithm

Backwards Analysis

Lemma: The expected number of facets created by the algorithm, $E(\sum_{r=1}^{n} |F_{conflict}(p_r)|)$, is at most 6n - 20.

- **Proof:** $|F_{conflict}(p_r)|$
- = # facets connecting p_r to its horizon on $conv(P_{r-1})$ (these are the newly created facets)
- = # facets that disappear when removing p_r from $conv(P_r)$
- $=: \deg(p_r, conv(P_r)) \quad degree \text{ of } p_r \text{ in } conv(P_r)$
- $\Rightarrow E(\deg(p_r, conv(P_r))) = \frac{1}{r-4} \sum_{i=5}^r \deg(p_i, conv(P_r))$
- $\leq \frac{1}{r-4} \left[\left(\sum_{i=1}^{r} \deg(p_i, \operatorname{conv}(P_r)) \right) 12 \right]^{r}$ Total degree of p_1, \dots, p_4 is at least 12

$$\leq \frac{1}{r-4} \left[2(3r-6) - 12 \right] = \frac{6r - 12 - 12}{r-4} = 6$$

Thus $4 + E\left(\sum_{r=5}^{n} |F_{conflict}(p_r)|\right) \le 4 + 6(n-4) = 6n - 20$

Convex Hull Runtime

- **Theorem:** The convex hull of a set of *n* points in \mathbb{R}^3 can be computed in randomized expected $O(n \log n)$ time.
- Theorem (higher dimensions): The complexity of the convex hull of n points in R^d is Θ(n^[d/2]). It can be computed in randomized expected O(n^[d/2] + n log n) time.