CMPS 6640/4040 Computational Geometry - Spring 16

$2 / 26 / 16$

3. Homework

Due 3/10/16 before class

1. Maintenance of Delaunay Triangulations (10 points)

Let P be a set of n points in the plane, for which a Delaunay Triangulation has already been constructed using randomized incremental construction. You are given all data structures that were used to compute the Delaunay Triangulation.
(a) (5 points) Given a point $q \in P$, give an algorithm that deletes q from the Delaunay Triangulation, i.e., it computes the $D T(P \backslash\{q\})$. Analyze the runtime. The runtime should depend on $k=\operatorname{deg}(q, D T(P))$.
(b) (5 points) Given another point $q \notin P$, give an algorithm that adds q to the Delaunay Triangulation, i.e., it computes $D T(P \cup\{q\})$. What is the runtime, expressed in n and k, where $k=\operatorname{deg}(q, D T(P \cup\{q\}))$?
2. Backwards Analysis (10 points)

Consider the following algorithm:

```
FindMax(A,n){
    // Finds maximum in set A of n numbers
    if(n==1) return the single number in A
    else {
        x = extract random element from A // in constant time; x is removed from A
        y = FindMax(A,n-1)
        if(x<=y) return y;
        else
            Compare x with all remaining elements in A and return the maximum
    }
}
```

(a) (4 points) Argue that this algorithm is correct, and give its worst-case runtime. (The runtime is proportional to the number of comparisons made.)
(b) (6 points) Compute the expected runtime of this algorithm.
(Hint: Introduce an indicator random variable for executing the else branch in the i-th step, and use backwards analysis to simplify the analysis.)

Flip over to back page \Longrightarrow

3. Facility Location (10 points)

Suppose you are given a set P of n grocery stores in the plane.
(a) (5 points) The task is to compute the location q of a new grocery store that maximizes the distance to all other grocery stores, i.e., such that the radius of an empty disk centered at q is maximized. Because the grocery store is supposed to be located within the city, we have the additional constraint that q has to lie inside $C H(P)$. Show how to compute q and analyze the runtime. (Hint: Use Voronoi diagrams. Pay special attention to the case when q might lie on the boundary of $C H(P)$.)
(b) (5 points) Now we want to find a good location q for a wholesale distribution center that is reachable by all grocery stores. So, the task is to compute the center q of the smallest enclosing disk of P, i.e., the disk with smallest radius such that all points in P are contained in the disk. Show how to compute q and analyze the runtime.
(Hint: Use a farthest-point Voronoi diagram.)
4. Voronoi and Lifting ($\mathbf{1 0}$ points)

We saw in class that the Voronoi diagram of a set of points in \mathbb{R}^{2} is the projection of the upper envelope of the dual lifted set of planes in \mathbb{R}^{3}. What does the projection of the lower envelope correspond to? Similarly, what does the projection of the upper convex hull of the points lifted to \mathbb{R}^{3} correspond to?
Answer these questions by researching on the internet. Cite the source you were using and give an explanation in your own words.

5. Reverse Voronoi (10 points)

Suppose we are given a subdivision of the plane into n convex regions. We suspect that this subdivision is a Voronoi diagram, but we do not know the sites. Develop an algorithm that finds a set of n point sites whose Voronoi diagram is exactly the given subdivision, if such a set exists.

