CMPS 6640/4040 Computational Geometry - Spring 16

$$
1 / 21 / 16
$$

1. Homework
 Due 2/4/16 before class

1. Binary search (10 points)

Assume you have an orientation test available which can determine in constant time whether three points make a left turn (i.e., the third point lies on the left of the oriented line described by the first two points) or a right turn. Now, let a point q and a convex polygon $P=\left\{p_{1}, \ldots, p_{n}\right\}$ in the plane be given, where the points of P are stored in an array in counter-clockwise order around P. Give pseudo-code to determine an upper tangent from q to P in $O(\log n)$ time.

2. Convex Hulls (10 points)

Let S be a set of n line segments in the plane. Let P be the set of $2 n$ endpoints of the segments in S. Prove that the convex hull of S is exactly the same as the convex hull of P.

3. Nested Convex Hulls (10 points)

Given a set S of n points in the plane, consider the subsets

$$
\begin{aligned}
S_{1} & =S, \\
S_{2} & =S_{1} \backslash\left\{\text { set of vertices of } \operatorname{conv}\left(S_{1}\right)\right\} \\
& \ldots \\
S_{i} & =S_{i-1} \backslash\left\{\text { set of vertices of } \operatorname{conv}\left(S_{i-1}\right)\right\}
\end{aligned}
$$

until S_{k} has at most three elements. Give an $O\left(n^{2}\right)$ time algorithm that computes all convex hulls $\operatorname{conv}\left(S_{1}\right), \operatorname{conv}\left(S_{2}\right), \ldots$. (If you can do it faster you can earn extra credit.)

4. Chan's Algorithm (10 points)

Consider Chan's convex hull algorithm to compute the convex hull of a set P of n points in the plane. The main algorithm is as follows:
(1) $h^{*}=2 ; L=$ fail
(2) while ($L \neq$ fail)
(a) $h^{*}=\min \left(2^{2^{i}}, n\right)$
(b) $L=\operatorname{RestrictedHull}\left(P, h^{*}\right)$
(c) $i++$
(3) return L

Let h be the number of vertices on the convex hull of P. If $h \leq h^{*}$ then RestrictedHull $\left(P, h^{*}\right)$ returns the convex hull of P, otherwise it returns "fail".
For each of the two cases below, determine the big-Oh runtime of Chan's algorithm when replacing line (2)(a) with the shown expression. Justify your answers.
(a) $h^{*}=\min \left(i^{2}, n\right)$
(b) $h^{*}=\min \left(2^{2^{2^{i}}}, n\right)$
5. Convex Sets (10 points)

Consider Radon's theorem: Any set S of at least $d+2$ points in \mathbb{R}^{d} can be split into two subsets S_{1} and S_{2} such that $\operatorname{conv}\left(S_{1}\right) \cap \operatorname{conv}\left(S_{2}\right) \neq \emptyset$.
Assuming Radon's theorem is given, prove the following theorem:
Let $\left\{C_{1}, \ldots, C_{n}\right\}$ be a family of n convex sets in \mathbb{R}^{d}. Show that if any $d+1$ convex sets have a non-empty intersection, then so does the whole family.
(Hint: One possible proof goes by induction on n. By induction we know that there is a point p_{i} in the intersection $\bigcap_{j \neq i} C_{j}$, for all $i=1, \ldots, n$. Then use Radon's theorem on the set $\left\{p_{i} \mid i=1, \ldots, n\right\}$ to construct a point p that belongs to all the sets C_{i}.)

