1/21/16

1. Homework Due 2/4/16 before class

1. Binary search (10 points)

Assume you have an orientation test available which can determine in constant time whether three points make a left turn (i.e., the third point lies on the left of the oriented line described by the first two points) or a right turn. Now, let a point q and a convex polygon $P = \{p_1, \ldots, p_n\}$ in the plane be given, where the points of P are stored in an array in counter-clockwise order around P. Give pseudo-code to determine an upper tangent from q to P in $O(\log n)$ time.

2. Convex Hulls (10 points)

Let S be a set of n line segments in the plane. Let P be the set of 2n endpoints of the segments in S. Prove that the convex hull of S is exactly the same as the convex hull of P.

3. Nested Convex Hulls (10 points)

Given a set S of n points in the plane, consider the subsets

$$S_1 = S,$$

$$S_2 = S_1 \setminus \{ \text{set of vertices of } conv(S_1) \}$$

...

$$S_i = S_{i-1} \setminus \{ \text{set of vertices of } conv(S_{i-1}) \}$$

until S_k has at most three elements. Give an $O(n^2)$ time algorithm that computes all convex hulls $conv(S_1), conv(S_2), \ldots$. (If you can do it faster you can earn extra credit.)

FLIP over to back page \implies

4. Chan's Algorithm (10 points)

Consider Chan's convex hull algorithm to compute the convex hull of a set P of n points in the plane. The main algorithm is as follows:

(1) $h^* = 2$; L = fail(2) while $(L \neq \text{fail})$ (a) $h^* = \min(2^{2^i}, n)$ (b) $L = \text{RestrictedHull}(P, h^*)$ (c) i++(3) return L

Let h be the number of vertices on the convex hull of P. If $h \leq h^*$ then RestrictedHull(P, h^{*}) returns the convex hull of P, otherwise it returns "fail".

For each of the two cases below, determine the big-Oh runtime of Chan's algorithm when replacing line (2)(a) with the shown expression. Justify your answers.

(a)
$$h^* = \min(i^2, n)$$

(b)
$$h^* = \min(2^{2^{2^i}}, n)$$

5. Convex Sets (10 points)

Consider Radon's theorem: Any set S of at least d + 2 points in \mathbb{R}^d can be split into two subsets S_1 and S_2 such that $conv(S_1) \cap conv(S_2) \neq \emptyset$.

Assuming Radon's theorem is given, prove the following theorem:

Let $\{C_1, \ldots, C_n\}$ be a family of *n* convex sets in \mathbb{R}^d . Show that if any d+1 convex sets have a non-empty intersection, then so does the whole family.

(Hint: One possible proof goes by induction on n. By induction we know that there is a point p_i in the intersection $\bigcap_{j\neq i} C_j$, for all i = 1, ..., n. Then use Radon's theorem on the set $\{p_i \mid i = 1, ..., n\}$ to construct a point p that belongs to all the sets C_i .)