CMPS 6610 - Fall 2018

Shortest Paths Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

Paths in graphs

Consider a digraph $G=(V, E)$ with an edge-weight function $w: E \rightarrow \mathbb{R}$. The weight of path $p=v_{1} \rightarrow$ $v_{2} \rightarrow \ldots \rightarrow v_{k}$ is defined to be

$$
w(p)=\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)
$$

Example:

Shortest paths

A shortest path from u to v is a path of minimum weight from u to v.

The shortest-path weight from u to v is defined as
$\delta(u, v)=\min \{w(p): p$ is a path from u to $v\}$.

Note: $\delta(u, v)=\infty$ if no path from u to v exists.

Optimal substructure

Theorem. A subpath of a shortest path is a shortest path.

Proof. Cut and paste:

Triangle inequality

Theorem. For all $u, v, x \in V$, we have

$$
\delta(u, v) \leq \delta(u, x)+\delta(x, v) .
$$

Proof.

- $\delta(u, v)$ minimizes over all paths from u to v
- Concatenating two shortest paths from u to x and from x to
v yields one specific path from u to v

Well-definedness of shortest paths

If a graph G contains a negative-weight cycle, then some shortest paths may not exist.

Example:

Single-source shortest paths

Problem. From a given source vertex $s \in V$, find the shortest-path weights $\delta(s, v)$ for all $v \in V$.

Assumption:
All edge weights $w(u, v)$ are non-negative.
It follows that all shortest-path weights must exist.
IDEA: Greedy.

1. Maintain a set S of vertices whose shortest-path weights from s are known, i.e., $d[v]=\delta(s, v)$
2. At each step add to S the vertex $u \in V-S$ whose distance estimate $d[u]$ from s is minimal.
3. Update the distance estimates $d[v]$ of vertices v adjacent to u.

Dijkstra's algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing \quad \triangleright$ Vertices for which $d[v]=d(s, v)$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$ sorted by d-values $d[\nu]$
while $Q \neq \varnothing$ do
$u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$ do
if $\begin{aligned} & d[v]>d[u]+w(u, v) \text { then } \\ & d[v] \leftarrow d[u]+w(u, v)\end{aligned}$
relaxation step
implicit Decrease-Key in Q

```
                                    Q\leftarrowV PRIM's algorithm
                                    key[v]}\leftarrow\infty\mathrm{ for all }v\in
```

$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing \quad \triangleright$ Vert
$Q \leftarrow V \quad \triangleright Q$ is sort
while $Q \neq \varnothing$ do
$u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$ do
if $d[v]>d[u]+w(u, v)$ then $d[v] \leftarrow d[u]+w(u, v)$

Difference to Prim's:

- It suffices to only check $v \in \mathrm{Q}$, but it doesn't hurt to check all v
- Add $d[u]$ to the weight

relaxation step

How to find the actual shortest paths?

Store a predecessor tree:
$d[s] \leftarrow 0$
for each $v \in V-\{s\}$
do $d[\nu] \leftarrow \infty$
$S \leftarrow \varnothing$ \triangleright Vertices for which $d[v]=d(s, v)$
$Q \leftarrow V \quad \triangleright Q$ is a priority queue maintaining $V-S$ sorted by d-values $d[\nu]$
while $Q \neq \varnothing$ do
$u \leftarrow$ Extract- $\operatorname{Min}(Q)$
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$ do
if $d[v]>d[u]+w(u, v)$ then
$d[v] \leftarrow d[u]+w(u, v)$
$\pi[v] \leftarrow u$

Example of Dijkstra's algorithm

Graph with nonnegative edge weights:

Example of Dijkstra's algorithm

Initialize:

$S:\{ \}$

Example of Dijkstra's algorithm

"A" \leftarrow Extract-Min (Q) :
$S:\{A\}$

$\pi:$| $A B C B E$ |
| :--- | :--- | :--- | :--- |
| $-\quad-\quad-\quad$ |

Q:	A	B	C	D	E
0	∞	∞	∞	∞	

Example of Dijkstra's algorithm

Relax all edges leaving A :

S: $\{A\}$

$\pi:$| $A B B C D B$ |
| :--- | :--- | :--- | :--- | :--- |
| $-\quad-\quad-\quad-$ |

Q:	A	B	C	D	E
0					

0	∞	∞	∞	∞
	10	3	-	-

$$
\begin{array}{|l|}
\hline \text { while } Q \neq \varnothing \text { do } \\
u \leftarrow \operatorname{EXTRACT}-\operatorname{MiN}(Q) \\
S \leftarrow S \cup\{u\} \\
\text { for each } v \in A d j[u] \text { do } \\
\text { if } d[v]>d[u]+w(u, v) \text { then } \\
\quad d[v] \leftarrow d[u]+w(u, v) \\
h m s \quad \pi[v] \leftarrow u
\end{array}
$$

Example of Dijkstra's algorithm

Relax all edges leaving A :

S: $\{A\}$

$\pi:$| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| - | A A | - | | |

Q:	A	B	C	$D \quad E$

0	∞	∞	∞	∞
	10	3	-	-

Example of Dijkstra's algorithm

"C" \leftarrow Extract-Min (Q) :

$$
S:\{A, C\}
$$

$$
\pi: \begin{array}{lllll}
A & B & C & D & E \\
\hline- & \mathrm{A} & \mathrm{~A} & - & -
\end{array}
$$

$$
Q: A B \subset D E
$$

0	∞	∞	∞	∞
	10	3	-	-

Example of Dijkstra's algorithm

Relax all edges leaving C :

$S:\{A, C\}$

$\pi:$	A	B	C	D	E
-	A	A	-	-	

Q: $\begin{array}{llllll}A \quad B \quad C \quad D \quad E\end{array}$

0	∞	∞	∞	∞
	10	3	-	-
	7		11	5

$\begin{array}{cccc}\infty & \infty & \infty & \infty \\ 10 & 3 & - & - \\ 7 & & 11 & 5\end{array}$

Example of Dijkstra's algorithm

Relax all edges leaving C :

$S:\{A, C\}$

$\pi:$| A | B | C | D | E |
| :---: | :---: | :---: | :---: | :---: |
| - | C | A | C | C |

Q: | $A \quad B \subset D E$ |
| :--- |

0	∞	∞	∞	∞
	10	3	-	-
	7		11	5

Example of Dijkstra's algorithm

$" E " \leftarrow$ Extract-Min (Q) :

$$
S:\{A, C, E\}
$$

$$
\pi: \begin{array}{lllll}
A & B & C & D & E \\
\hline- & \mathrm{C} & \mathrm{~A} & \mathrm{C} & \mathrm{C}
\end{array}
$$

$$
Q: \begin{array}{llllll}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty \\
& 10 & 3 & - & - \\
& 7 & & 11 & 5
\end{array}
$$

Example of Dijkstra's algorithm

Relax all edges leaving E :

$S:\{A, C, E\}$

$\pi:$	A	B	C	D	E
-	C	A	C	C	$Q:$
:---:	:---:	:---:	:---:	:---:	
0	∞	∞	∞	∞	
	10	3	∞	∞	
	7		11	5	
	7		11		

while $Q \neq \varnothing$ do
$u \leftarrow$ EXTRACT-Min (Q)
$S \leftarrow S \cup\{u\}$
for each $v \in \operatorname{Adj}[u]$ do
if $d[v]>d[u]+w(u, v)$ then
$d[v] \leftarrow d[u]+w(u, v)$
$\pi[\mathrm{v}] \leftarrow \mathrm{u}$

Example of Dijkstra's algorithm

" B " \leftarrow Extract-Min (Q) :
$S:\{A, C, E, B\}$

$\pi:$| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| - | C | A | C | C |

Q :
 (Q):

Example of Dijkstra's

 algorithm
Relax all edges leaving B :

$S:\{A, C, E, B\}$

$\pi:$| A | B | C | D | E |
| :--- | :--- | :--- | :--- | :--- |
| - | C | A | B | C |

Q:
D

0	∞	∞	∞	∞
	10	3	∞	∞
7		11	5	
	7		11	
			9	

Example of Dijkstra's

 algorithm" D " \leftarrow Extract-Min (Q) :

S: $\{A, C, E, B, D\} 0$

$\pi:$	A	B	C	D	E
-	C	A	B	C	

Q:

0	∞	∞	∞	∞
	10	3	∞	∞
	7		11	5
	7		11	
			9	

Analysis of Dijkstra

Handshaking Lemma $\Rightarrow \Theta(|E|)$ implicit Decrease-Key's.
Time $=\Theta(|V|) \cdot T_{\text {Extract-Min }}+\Theta(|E|) \cdot T_{\text {Decrease-Key }}$

Analysis of Dijkstra (continued)

Time $=\Theta(|V|) \cdot T_{\text {Extract-min }}+\Theta(|E|) \cdot T_{\text {Decrease-key }}$

$$
Q \quad T_{\text {EXtract-Min }} T_{\text {Decrease-Key }} \quad \text { Total }
$$

array
$O(|V|)$
$O(1)$
$O\left(|V|^{2}\right)$
binary
heap

$$
O(\log |V|)
$$

$O(\log |V|)$
$O(|E| \log |V|)$
Fibonacci
$O(\log |V|)$ amortized
$O(1) \quad O(|E|+|V| \log |V|)$ amortized worst case

Correctness

Theorem. (i) For all $v \in S: d[v]=\delta(s, v)$
(ii) For all $v \notin S: d[v]=$ weight of shortest path from s to v that uses only (besides v itself) vertices in S.

Corollary. Dijkstra's algorithm terminates with $d[v]$
$=\delta(s, v)$ for all $v \in V$.

Correctness

Theorem. (i) For all $v \in S: d[v]=\delta(s, v)$
(ii) For all $v \notin S: d[v]=$ weight of shortest path from s to v that uses only (besides v itself) vertices in S.
Proof. By induction.

- Base: Before the while loop, $d[s]=0$ and $d[\nu]=\infty$ for all $v \neq s$, so (i) and (ii) are true.
- Step: Assume (i) and (ii) are true before an iteration; now we need to show they remain true after another iteration. Let u be the vertex added to S, so $d[u] \leq d[v]$ for all other v $\notin S$.

Correctness

Theorem. (i) For all $v \in S: d[v]=\delta(s, v)$
(ii) For all $v \notin S: d[v]=$ weight of shortest path from s to v that uses only (besides v itself) vertices in S.

- (i) Need to show that $d[u]=\delta(s, u)$. Assume the contrary.
\Rightarrow There is a path p from s to u with $w(p)<d[u]$. Because of (ii) that path uses vertices $\notin S$, in addition to u.
\Rightarrow Let y be first vertex on p such that $y \notin S$.

Correctness

Theorem. (i) For all $v \in S: d[v]=\delta(s, v)$
(ii) For all $v \notin S: d[v]=$ weight of shortest path from s to v that uses only (besides v itself) vertices in S.

S, just before adding u.

Path p from
s to u
$\Rightarrow d[y] \leq w(p)<d[u]$. Contradiction to the choice of u. weights are nonnegative
assumption
about path

Correctness

Theorem. (i) For all $v \in S: d[v]=\delta(s, v)$
(ii) For all $v \notin S: d[v]=$ weight of shortest path from s to v that uses only (besides v itself) vertices in S.
-(ii) Let $v \notin S$. Let p be a shortest path from s to v that uses only (besides v itself) vertices in S.

- p does not contain u : (ii) true by inductive hypothesis
- p contains u : p consists of vertices in $S \backslash\{u\}$ and ends with an edge from u to v.
$\Rightarrow w(p)=d[u]+w(u, v)$, which is the value of $d[\nu]$ after adding u. So (ii) is true.

Unweighted graphs

Suppose $w(u, v)=1$ for all $(u, v) \in E$. Can the code for Dijkstra be improved?

- Use a simple FIFO queue instead of a priority queue.
- Breadth-first search while $Q \neq \varnothing$ do $u \leftarrow \operatorname{Dequeue}(Q)$ for each $v \in \operatorname{Adj}[u]$ do if $d[v]=\infty$
then $d[v] \leftarrow d[u]+1$
Enqueue (Q, v)
Analysis: Time $=O(|V|+|E|)$.

Correctness of BFS

```
while \(Q \neq \varnothing\)
        do \(u \leftarrow \operatorname{Dequeve}(Q)\)
        for each \(v \in \operatorname{Adj}[u]\)
                do if \(d[v]=\infty\)
                then \(d[v] \leftarrow d[u]+1\)
                        EnQueue \((Q, v)\)
```


Key idea:

The FIFO Q in breadth-first search mimics the priority queue Q in Dijkstra.

- Invariant: v comes after u in Q implies that $d[v]=d[u]$ or $d[v]=d[u]+1$.

Example of breadth-first search

$Q:$
$d[v]$

Example of breadth-first search

$$
\begin{aligned}
& 67 \\
& \text { Q: } a b d c e f g i
\end{aligned}
$$

Example of breadth-first search

Example of breadth-first search

Example of breadth-first search

$$
\begin{aligned}
& \text { Q: } a b d c e f g i h \\
& d[v] \quad 0 \quad 1 \quad 1 \begin{array}{c}
\text { CMPS } 6610 \text { Algorithms } \\
3
\end{array}
\end{aligned}
$$

Example of breadth-first search

Distance
to a :

Q:
$d[\nu]$

Negative-weight cycles

Recall: If a graph $G=(V, E)$ contains a negativeweight cycle, then some shortest paths may not exist. Example:

Bellman-Ford algorithm: Finds all shortest-path weights from a source $s \in V$ to all $v \in V$ or determines that a negative-weight cycle exists.

Bellman-Ford algorithm

$d[s] \leftarrow 0$
for each $v \in V-\{s\}\}$ initialization do $d[\nu] \leftarrow \infty$
for $i \leftarrow 1$ to $|V|-1$ do
for each edge $(u, v) \in E$ do

$$
\text { if } \left.\begin{array}{c}
d[v]>d[u]+w(u, v) \text { then } \\
d[v] \leftarrow d[u]+w(u, v) \\
\pi[v] \leftarrow u
\end{array}\right\} \begin{aligned}
& \text { relaxation } \\
& \text { step }
\end{aligned}
$$

for each edge $(u, v) \in E$
do if $d[v]>d[u]+w(u, v)$
then report that a negative-weight cycle exists
At the end, $d[v]=\delta(s, v)$. Time $=O(|V||E|)$.

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

$$
\begin{array}{ccccc}
A & B & C & D & E \\
\hline \hline 0 & \infty & \infty & \infty & \infty \\
\hline 0 & -1 & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty \\
0 & -1 & 2 & \infty & \infty \\
\hline 0 & -1 & 2 & \infty & 1
\end{array}
$$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

$$
\begin{array}{ccccc}
A & B & C & D & E \\
\hline 0 & \infty & \infty & \infty & \infty \\
\hline 0 & -1 & \infty & \infty & \infty \\
0 & -1 & 4 & \infty & \infty \\
0 & -1 & 2 & \infty & \infty \\
\hline 0 & -1 & 2 & \infty & 1 \\
0 & -1 & 2 & 1 & 1 \\
0 & -1 & 2 & -2 & 1
\end{array}
$$

Example of Bellman-Ford

Order of edges: $(B, E),(D, B),(B, D),(A, B),(A, C),(D, C),(B, C),(E, D)$

Note: d-values decrease monotonically.

A	B	C	D	E
0	∞	∞	∞	∞
0	-1	∞	∞	∞
0	-1	4	∞	∞
0	-1	2	∞	∞
0	-1	2	∞	1
0	-1	2	1	1

0	-1	2	-2	1

\ldots and 2 more iterations

Correctness

Theorem. If $G=(V, E)$ contains no negativeweight cycles, then after the Bellman-Ford algorithm executes, $d[v]=\delta(s, v)$ for all $v \in V$. Proof. Let $v \in V$ be any vertex, and consider a shortest path p from s to v with the minimum number of edges.

Since p is a shortest path, we have

$$
\delta\left(s, v_{i}\right)=\delta\left(s, v_{i-1}\right)+w\left(v_{i-1}, v_{i}\right)
$$

Correctness (continued)

Initially, $d\left[v_{0}\right]=0=\delta\left(s, v_{0}\right)$, and $d[s]$ is unchanged by subsequent relaxations.

- After 1 pass through E, we have $d\left[v_{1}\right]=\delta\left(s, v_{1}\right)$.
- After 2 passes through E, we have $d\left[v_{2}\right]=\delta\left(s, v_{2}\right)$.
- After k passes through E, we have $d\left[v_{k}\right]=\delta\left(s, v_{k}\right)$.

Since G contains no negative-weight cycles, p is simple.
Longest simple path has $\leq|V|-1$ edges. \square

Detection of negative-weight cycles

Corollary. If a value $d[v]$ fails to converge after $|V|-1$ passes, there exists a negative-weight cycle in G reachable from $s . \square$

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.

DAG shortest paths

If the graph is a directed acyclic graph (DAG), we first topologically sort the vertices.

- Determine $f: V \rightarrow\{1,2, \ldots,|V|\}$ such that $(u, v) \in E$ $\Rightarrow f(u)<f(v)$.
- $O(|V|+|E|)$ time

- Walk through the vertices $u \in V$ in this order, relaxing the edges in $\operatorname{Adj}[u]$, thereby obtaining the shortest paths from s in a total of $O(|V|+|E|$ chps 6610 Algorithms .

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E|+|V| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

All-pairs shortest paths

All-pairs shortest paths

Input: Digraph $G=(V, E)$, where $|V|=n$, with edge-weight function $w: E \rightarrow \mathbb{R}$.
Output: $n \times n$ matrix of shortest-path lengths
$\delta(i, j)$ for all $i, j \in V$.
Algorithm \#1:

- Run Bellman-Ford once from each vertex.
- Time $=\mathrm{O}\left(|V|^{2}|E|\right)$.
- But: Dense graph $\Rightarrow \mathrm{O}\left(|V|^{4}\right)$ time.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E|+|V| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)$

All-pairs shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm $|V|$ times: $O\left(|V||E|+|V|^{2} \log |V|\right)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$

Floyd-Warshall algorithm

- Dynamic programming algorithm.
- Assume $V=\{1,2, \ldots, n\}$, and assume G is given in an adjacency matrix $A=\left(a_{i j}\right)_{1 \leq i, j \leq n}$ where $a_{i j}$ is the weight of the edge from i to j.
Define $c_{i j}{ }^{(k)}=$ weight of a shortest path from i to j with intermediate vertices belonging to the set $\{1,2, \ldots, k\}$.

Thus, $\delta(i, j)=c_{i j}{ }^{(n)}$. Also, $c_{i j}{ }^{(0)}=a_{i j}$.

Floyd-Warshall recurrence

$c_{i j}{ }^{(k)}=\min \left\{c_{i j}^{(k-1)}, c_{i k}^{(k-1)}+c_{k i}^{(k-1)}\right\}$
Do not use vertex k
Use vertex k

intermediate vertices in $\{1,2, \ldots, k-1\}$

Pseudocode for FloydWarshall

for $k \leftarrow 1$ to n do
for $i \leftarrow 1$ to n do
for $j \leftarrow 1$ to n do
$\left.\begin{array}{rl}\text { if } c_{i j}^{(k-1)}>c_{i k}^{(k-1)}+c_{k j}^{(k-1)} \text { then } \\ c_{i j}^{(k)} & \leftarrow c_{i k}(k-1)+c_{k j}^{(k-1)}\end{array}\right\}$ relaxation
else

$$
c_{i j}(k) \leftarrow c_{i j}^{(k-1)}
$$

- Runs in $\Theta\left(n^{3}\right)$ time and space
- Simple to code.
- Efficient in practice.

Transitive Closure of a Directed Graph

Compute $t_{i . j}= \begin{cases}1 & \text { if there exists a path from } i \text { to } j,\end{cases}$
Compute $t_{i j}=\left\{\begin{array}{l}0 \text { otherwise. }\end{array}\right.$
Idea: Use Floyd-Warshall, but with (\vee, \wedge) instead of (min, +):

$$
t_{i j}{ }^{(k)}=t_{i j}{ }^{(k-1)} \vee\left(t_{i k}^{(k-1)} \wedge t_{k j}^{(k-1)}\right) .
$$

Time $=\Theta\left(n^{3}\right)$.
Floyd-Warshall recurrence

$$
c_{i j}^{(k)}=\min \left\{c_{i j}^{(k-1)}, c_{i k}^{(k-1)}+c_{k j}^{(k-1)}\right\}
$$

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E|+|V| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)\}$

All-pairs shortest paths

- Nonnegative edge weights
adj. list
- Dijkstra's algorithm $|V|$ times: $O\left(|V||E|+|V|^{2} \log |V|\right)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$
adj. list
adj. matrix

Graph reweighting

Theorem. Given a label $h(v)$ for each $v \in V$, reweight each edge $(u, v) \in E$ by

$$
\hat{w}(u, v)=w(u, v)+h(u)-h(v) .
$$

Then, all paths between the same two vertices are reweighted by the same amount.
Proof. Let $p=v_{1} \rightarrow v_{2} \rightarrow 6 \rightarrow v_{k}$ be a path in the graph.
Then, we have $\hat{\omega}(p)=\sum_{i=1}^{k-1} \hat{w}\left(v_{i}, v_{i+1}\right)$

$$
\begin{aligned}
& =\sum_{i=1}^{k-1}\left(w\left(v_{i}, v_{i+1}\right)+h\left(v_{i}\right)-h\left(v_{i+1}\right)\right) \\
& =\sum_{i=1}^{k-1} w\left(v_{i}, v_{i+1}\right)+h\left(v_{1}\right)-h\left(v_{k}\right) \\
& =\underset{\text { CMPS } 6610 \text { Algorithms }}{w(p)+h\left(v_{1}\right)-h\left(v_{k}\right) .}
\end{aligned}
$$

Johnson's algorithm

1. Find a vertex labeling h, by running Bellman-Ford on $G \cup\{$ super-source $s\}$. Set $h(v)=\delta(s, v)$ or determine that a negative-weight cycle exists.
By triangle inequality $h(v) \leq h(u)+w(u, v)$, and hence $\hat{w}(u, v)=w(u, v)+h(u)-h(v) \geq 0$.

- Time $=O(|V||E|)$

2. Run Dijkstra's algorithm from each vertex using \hat{w}.

- Time $=O\left(|V||E|+|V|^{2} \log |V|\right)$.

3. Reweight each shortest-path weight $\hat{\delta}(u, v)$ to compute the shortest-path weight $\delta(u, v)=\delta(u, v)-h(u)+h(v)$ of the original graph G.

- Time $=O\left(|V|^{2}\right)$

Total time $=O\left(|V||E|+|V|^{2} \log |V|\right)$.

Shortest paths

Single-source shortest paths

- Nonnegative edge weights
- Dijkstra's algorithm: $O(|E|+|V| \log |V|)$
- General: Bellman-Ford: $O(|V||E|)$
- DAG: One pass of Bellman-Ford: $O(|V|+|E|)\}$

All-pairs shortest paths

- Nonnegative edge weights
adj. list
- Dijkstra's algorithm $|V|$ times: $O\left(|V||E|+|V|^{2} \log |V|\right)$
- General
- Bellman-Ford $|V|$ times: $\mathrm{O}\left(|V|^{2}|E|\right)$
- Floyd-Warshall: $\mathrm{O}\left(|V|^{3}\right)$
adj. list
- Johnson's algorithm: $O\left(|V||E|+|V|^{2} \log |V|\right)$ adj. list

