CMPS 6610 - Fall 2018

Quicksort

Carola Wenk

Slides courtesy of Charles Leiserson with additions by Carola Wenk

Quicksort

- Proposed by C.A.R. Hoare in 1962.
- Divide-and-conquer algorithm.
- Sorts "in place" (like insertion sort, but not like merge sort).
- Very practical (with tuning).
- We are going to perform an expected runtime analysis on randomized quicksort

Quicksort: Divide and conquer

Quicksort an n-element array:

1. Divide: Partition the array into two subarrays around a pivot x such that elements in lower subarray $\leq x \leq$ elements in upper subarray.

2. Conquer: Recursively sort the two subarrays.
3. Combine: Trivial.

Key: Linear-time partitioning subroutine.

Partitioning subroutine

$\operatorname{Partition}(A, p, q) \triangleright A[p \ldots q]$

```
x}\leftarrowA[p]\quad\triangleright\operatorname{pivot}=A[p
    i}\leftarrow
    for}j\leftarrowp+1\mathrm{ to }
        do if }A[j]\leq
```

Running time
$=O(n)$ for n
elements.
then $i \leftarrow i+1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[p] \leftrightarrow A[i]$
return i

Example of partitioning

Example of partitioning

6	10	13	5	8	3	2	11

6	5	13	10	8	3	2	11

Example of partitioning

6	10	13	5	8	3	2	11

6	5	13	10	8	3	2	11

Example of partitioning

6	5	3	10	8	13	2	11

Example of partitioning

6	5	3	10	8	13	2	11

Example of partitioning

6	5	3	10	8	13	2	11

6	5	3		2	8	13	131	10	11		
				i							

Example of partitioning

Pseudocode for quicksort

$\operatorname{Quicksort}(A, p, r)$

$$
\text { if } p<r
$$

then $q \leftarrow \operatorname{Partition}(A, p, r)$

$\operatorname{Quicksort}(A, p, q-1)$
Quicksort $(A, q+1, r)$

Initial call: Quicksort $(A, 1, n)$

Analysis of quicksort

- Assume all input elements are distinct.
- In practice, there are better partitioning algorithms for when duplicate input elements may exist.

Deterministic Algorithms

Runtime for deterministic algorithms with input size n :

- Worst-case runtime
\rightarrow Attained by one input of size n
- Best-case runtime
\rightarrow Attained by one input of size n
- Average runtime
\rightarrow Averaged over all possible inputs of size n

Worst-case of quicksort

- Let $T(n)=$ worst-case running time on an array of n elements.
- Input sorted or reverse sorted.
- Partition around min or max element.
- One side of partition always has no elements.
- $T(n)=T(0)+T(n-1)+\Theta(n)$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

$T(n)$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

Worst-case recursion tree

$$
T(n)=T(0)+T(n-1)+c n
$$

Worst-case recursion tree

Deterministic Algorithms

Runtime for deterministic algorithms with input size n :

- Worst-case runtime: $O\left(n^{2}\right)$
\rightarrow Attained by input: $[1,2,3, \ldots, n]$ or $[n, n-1, \ldots, 2,1]$
- Best-case runtime
\rightarrow Attained by one input of size n
- Average runtime
\rightarrow Averaged over all possible inputs of size n

Best-case analysis (For intuition only!)

If we're lucky, Partition splits the array evenly:

$$
\begin{aligned}
T(n) & =2 T(n / 2)+\Theta(n) \\
& =\Theta(n \log n) \quad \text { (same as merge sort) }
\end{aligned}
$$

What if the split is always $\frac{1}{10}: \frac{9}{10}$?

$$
T(n)=T\left(\frac{1}{10} n\right)+T\left(\frac{9}{10} n\right)+\Theta(n)
$$

What is the solution to this recurrence?

Analysis of "almost-best" case

$T(n)$

Analysis of "almost-best" case

Deterministic Algorithms

Runtime for deterministic algorithms with input size n :

- Worst-case runtime: $O\left(n^{2}\right)$
\rightarrow Attained by input: $[1,2,3, \ldots, n]$ or $[n, n-1, \ldots, 2,1]$
- Best-case runtime: $O(n \log n)$
\rightarrow Attained by input of size n that splits evenly or $\frac{1}{10}: \frac{9}{10}$ at every recursive level
- Average runtime
\rightarrow Averaged over all possible inputs of size n

Average Runtime

- What kind of inputs are there?
- Do $[1,2, \ldots, n]$ and $[5,6, \ldots, n+5]$ cause different behavior of Quicksort?
- No. Therefore it suffices to only consider all permutations of $[1,2, \ldots, n]$.
- How many inputs are there?
- There are n ! different permutations of $[1,2, \ldots, n]$
\Rightarrow Average over all n ! input permutations.

Average Runtime: Quicksort

- The average runtime averages runtimes over all n ! different input permutations
- One can show that the average runtime for Quicksort is $O(n \log n)$
- Disadvantage of considering average runtime:
- There are still worst-case inputs that will have the worst-case runtime of $\mathrm{O}\left(n^{2}\right)$
- Are all inputs really equally likely? That depends on the application
\Rightarrow Better: Use a randomized algorithm

Randomized quicksort

IDEA: Partition around a random element.

- Running time is independent of the input order. It depends on a probabilistic experiment (sequence s of numbers obtained from random number generator)
\Rightarrow Runtime is a random variable (maps sequence of random numbers to runtimes)
- Expected runtime = expected value of runtime random variable
- No assumptions need to be made about the input distribution.
- No specific input elicits the worst-case behavior.
- The worst case is determined only by the sequence s of random numbers.

Quicksort Runtimes

- Best case runtime $\mathrm{T}_{\text {best }}(n) \in \mathrm{O}(n \log n)$
- Worst case runtime $\mathrm{T}_{\text {worst }}(n) \in \mathrm{O}\left(n^{2}\right)$
- Average runtime $\mathrm{T}_{\text {avg }}(n) \in \mathrm{O}(n \log n)$
- Better even, the expected runtime of randomized quicksort is $\mathrm{O}(n \log n)$

Probability

- Let S be a sample space of possible outcomes.
- $E \subseteq S$ is an event
- The (Laplacian) probability of E is defined as $\mathrm{P}(E)=|E||S|$ $\Rightarrow \mathrm{P}(s)=1 /|S|$ for all $s \in S$
(Note: This is a special case of a probability distribution. In general $\mathrm{P}(s)$ can be quite arbitrary. For a loaded die the probabilities could be for example $\mathrm{P}(6)=1 / 2$ and $\mathrm{P}(1)=\mathrm{P}(2)=\mathrm{P}(3)=\mathrm{P}(4)=\mathrm{P}(5)=1 / 10$.

Example: Rolling a (six-sided) die

- $S=\{1,2,3,4,5,6\}$
- $\mathrm{P}(2)=\mathrm{P}(\{2\})=1 /|S|=1 / 6$
- Let $E=\{2,6\} \Rightarrow \mathrm{P}(E)=2 / 6=1 / 3=\mathrm{P}($ rolling a 2 or a 6$)$

In general: For any $s \in S$ and any $E \subseteq S$

- $0 \leq \mathrm{P}(s) \leq 1$
- $\sum_{s \in S} \mathrm{P}(s)=1$
- $\mathrm{P}(E)=\sum_{s \in E} \mathrm{P}(s)$

Random Variable

- A random variable X on S is a function from S to \mathbb{R}, $X: S \rightarrow \mathbb{R}$

Example 1: Flip coin three times.

- $S=\{\mathrm{HHH}, \mathrm{HHT}, \mathrm{HTH}, \mathrm{HTT}, \mathrm{THH}, \mathrm{THT}, \mathrm{TTH}, \mathrm{TTT}\}$
- Let $X(s)=\#$ heads in s

$$
\begin{aligned}
& \Rightarrow X(\mathrm{HHH})=3 \\
& X(\mathrm{HHT})=X(\mathrm{HTH})=X(\mathrm{THH})=2 \\
& X(\mathrm{TTH})=X(\mathrm{THT})=X(\mathrm{HTH})=1 \\
& X(\mathrm{TTT})=0
\end{aligned}
$$

Example 2: Play game: Win $\$ 5$ when getting HHH , pay $\$ 1$ otherwise

- Let $Y(s)$ be the win/loss for the outcome s
$\Rightarrow Y(\mathrm{HHH})=5$
$Y(\mathrm{HHT})=Y(\mathrm{HTH})=\ldots=-1$

What is the average win/loss?

Expected Value

- The expected value of a random variable $X: S \rightarrow \mathbb{R}$ is defined as

$$
\mathrm{E}(X)=\sum_{s \in S} \mathrm{P}(s) \cdot X(s)=\sum_{x \in \mathbb{R}} \mathrm{P}(\{X=x\}) \cdot x
$$

Notice the similarity to the arithmetic mean (or average).

Example 2 (continued):

$$
\begin{aligned}
& \mathrm{E}(\mathrm{Y})=\sum_{s \in S} \mathrm{P}(s) \cdot Y(s)=\mathrm{P}(\mathrm{HHH}) \cdot 5+\mathrm{P}(\mathrm{HHT}) \cdot(-1)+\mathrm{P}(\mathrm{HTH}) \cdot(-1)+\mathrm{P}(\mathrm{HTT}) \cdot(-1) \\
&+\mathrm{P}(\mathrm{THH}) \cdot(-1)+\mathrm{P}(\mathrm{THT}) \cdot(-1)+\mathrm{P}(\mathrm{TTH}) \cdot(-1)+\mathrm{P}(\mathrm{TTT}) \cdot(-1) \\
&=\mathrm{P}(\mathrm{HHH}) \cdot 5+\sum_{s \in S \mid\{H H H} \mathrm{P}(\mathrm{~s}) \cdot(-1)=1 / 2^{3} \cdot 5+7 \cdot 1 / 2^{3} \cdot(-1) \\
&=(5-7) / 2^{3}=-2 / 8=-1 / 4 \\
&=\sum_{y \in \mathbb{R}} \mathrm{P}(\{Y=y\}) \cdot y=\mathrm{P}(\mathrm{HHH}) \cdot 5+\mathrm{P}(\{Y=-1\}) \cdot(-1)=1 / 2^{3} \cdot 5+7 / 2^{3} \cdot(-1)=-1 / 4
\end{aligned}
$$

\Rightarrow The average win/loss is $\mathrm{E}(Y)=-1 / 4$

Theorem (Linearity of Expectation):

Let X, Y be two random variables on S. Then the following holds:

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

Proof: $\mathrm{E}(X+Y)=\underset{s \in S}{ } \sum_{\mathrm{S}} \mathrm{P}(s) \cdot(X(s)+Y(s))=\sum_{s \in S} \mathrm{P}(s) \cdot X(s)+\sum_{s \in S} \mathrm{P}(s) \cdot Y(s)=\mathrm{E}(\mathrm{X})+\mathrm{E}(\mathrm{Y}) \quad \square$

Randomized algorithms

- Allow random choices during the algorithm
- Sample space $S=\{$ all sequences of random choices\}
- The runtime $T: S \rightarrow \mathbf{R}$ is a random variable. The runtime $T(s)$ depends on the particular sequence s of random choices.
\Rightarrow Consider the expected runtime $\mathrm{E}(T)$

Expected Runtime Analysis for Quicksort

- Assume all elements in the input array are distinct
- Runtime is proportional to $\Theta(n+X)$, where $X=$ \#comparisons made in PARTITION routine
- Comparisons are made between a pivot (in some recursive call) and another array element

Expected Runtime Analysis for Quicksort

- Let z_{1}, \ldots, z_{n} be the elements of the input array in sorted (non-decreasing) order
- Let $Z_{i j}=\left\{z_{i}, z_{i+1}, \ldots, z_{j}\right\}$
- Each pair of elements z_{i} and z_{j} is compared at most once:
- One of them has to be the pivot
- After the PARTITION routine, this pivot has its final position in sorted order and won't be compared in subsequent recursive calls

Expected Runtime Analysis for Quicksort
 - Let $X_{i j}=\left\{\begin{array}{l}1, \text { if } z_{i} \text { is compared to } z_{j} \\ 0, \text { otherwise }\end{array}\right.$

- $X_{i j}$ is an indicator random variable
- Total \# comparisons $X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}$
- $E(X)=E\left(\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i j}\right)$ linearity of expectation
- It remains to compute $E\left(X_{i j}\right)$

Expected Runtime Analysis for Quicksort

- $E\left(X_{i j}\right)=1 \cdot P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$ $+0 \cdot P\left(z_{i}\right.$ is not compared to $\left.z_{j}\right)$
- It remains to compute: $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)$
- If pivot x is chosen such that $z_{i}<x<z_{j}$ then z_{i} and z_{j} are on different sides of the pivot and won't be compared subsequently
- If z_{i} is chosen as a pivot before any other element in $Z_{i j}$ then z_{i} will be compared to every element in $Z_{i j} \backslash\left\{z_{i}\right\}$

Expected Runtime Analysis for Quicksort

- The argument is symmetric for z_{j}
- Therefore, z_{i} and z_{j} are compared if and only if the first element of $Z_{i j}$ to be chosen as a pivot is z_{i} or z_{j}
- $P\left(z_{i}\right.$ is compared to $\left.z_{j}\right)=$ $P\left(Z_{i}\right.$ is first pivot from $\left.Z_{i j}\right)$ $+P\left(z_{j}\right.$ is first pivot from $\left.Z_{i j}\right)$ $=\frac{1}{\left|Z_{i j}\right|}+\frac{1}{\left|Z_{i j}\right|}=\frac{2}{\left|Z_{i j}\right|}=\frac{2}{j-i+1}$

Expected Runtime Analysis for Quicksort

- $E(X)=$

$$
\begin{aligned}
& \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left(X_{i j}\right)=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} \\
& <2 \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{1}{k} \in O\left(2 \sum_{\text {Harmonic number }}^{n-1} \log (n-i)\right)
\end{aligned}
$$

- Therefore, $E(X) \in O(n \log n)$

Average Runtime vs. Expected Runtime

- Average runtime is averaged over all inputs of a deterministic algorithm.
- Expected runtime is the expected value of the runtime random variable of a randomized algorithm. It effectively "averages" over all sequences of random numbers.
- De facto both analyses are very similar. However in practice the randomized algorithm ensures that not one single input elicits worst case behavior.

Quicksort in practice

- Quicksort is a great general-purpose sorting algorithm.
- Quicksort is typically over twice as fast as merge sort.
- Quicksort can benefit substantially from code tuning.
- Quicksort behaves well even with caching and virtual memory.

