
CMPS 6610 Algorithms 1

CMPS 6610 – Fall 2018

Order Statistics
Carola Wenk

Slides courtesy of Charles Leiserson with additions
by Carola Wenk

Order statistics

Select the ith smallest of n elements (the
element with rank i).

• i = 1: minimum;
• i = n: maximum;
• i = (n+1)/2 or (n+1)/2: median.

Naive algorithm: Sort and index ith element.
Worst-case running time = Q(n log n + 1)

= Q(n log n),
using merge sort (not quicksort).

CMPS 6610 Algorithms 2

Randomized divide-and-
conquer algorithm

RAND-SELECT(A, p, q, i) i-th smallest of A[p . . q]
if p = q then return A[p]
r RAND-PARTITION(A, p, q)
k r – p + 1 k = rank(A[r])
if i = k then return A[r]
if i < k

then return RAND-SELECT(A, p, r – 1, i)
else return RAND-SELECT(A, r + 1, q, i – k)

 A[r] A[r]
rp q

k

CMPS 6610 Algorithms 3

Example

pivot

i = 76 10 13 5 8 3 2 11

k = 4

Select the 7 – 4 = 3rd smallest recursively.

Select the i = 7th smallest:

2 5 3 6 8 13 10 11

Partition:

CMPS 6610 Algorithms 4

Intuition for analysis

Lucky:
101log 3/4 nn

CASE 3
T(n) = T(3n/4) + dn

= Q(n)
Unlucky:

T(n) = T(n – 1) + dn
= Q(n2)

arithmetic series

Worse than sorting!

(All our analyses today assume that all elements
are distinct.)

for RAND-PARTITION

CMPS 6610 Algorithms 5

Analysis of expected time

• Call a pivot good if its rank lies in [n/4,3n/4].
• How many good pivots are there?
A random pivot has 50% chance of being good.

• Let T(n,s) be the runtime random variable

T(n,s) T(3n/4,s) + X(s)dn

time to reduce array size to 3/4n

#times it takes to
find a good pivot

n/2

Runtime of partition

CMPS 6610 Algorithms 6

Analysis of expected time
Lemma: A fair coin needs to be tossed an expected
number of 2 times until the first “heads” is seen.

Proof: Let E(X) be the expected number of tosses
until the first “heads”is seen.
• Need at least one toss, if it’s “heads” we are done.
• If it’s “tails” we need to repeat (probability ½).

 E(X) = 1 + ½ E(X)
 E(X) = 2

CMPS 6610 Algorithms 7

Analysis of expected time

T(n,s) T(3n/4,s) + X(s)dn

time to reduce array size to 3/4n

#times it takes to
find a good pivot

Runtime of partition

 E(T(n,s)) E(T(3n/4,s)) + E(X(s)dn)
 E(T(n,s)) E(T(3n/4,s)) + E(X(s))dn
 E(T(n,s)) E(T(3n/4,s)) + 2dn
 Texp(n) Texp(3n/4) + 2dn
 Texp(n) Q(n)

Linearity of
expectation

Lemma

CMPS 6610 Algorithms 8

Master Thm
(case 3)

Summary of randomized
order-statistic selection

• Works fast: linear expected time.
• Excellent algorithm in practice.
• But, the worst case is very bad: Q(n2).

Q. Is there an algorithm that runs in linear
time in the worst case?

IDEA: Generate a good pivot recursively.
This algorithm has large constants though and
therefore is not efficient in practice.

A. Yes, due to Blum, Floyd, Pratt, Rivest, and
Tarjan [1973].

CMPS 6610 Algorithms 9

Worst-case linear-time order
statistics

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

Same as
RAND-
SELECT

CMPS 6610 Algorithms 10

Choosing the pivot

CMPS 6610 Algorithms 11

Choosing the pivot

1. Divide the n elements into groups of 5.

CMPS 6610 Algorithms 12

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

CMPS 6610 Algorithms 13

Choosing the pivot

lesser

greater

1. Divide the n elements into groups of 5. Find
the median of each 5-element group by rote.

2. Recursively SELECT the median x of the n/5
group medians to be the pivot.

x

CMPS 6610 Algorithms 14

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Q(n)

T(n/5)

Q(n)

T()?

CMPS 6610 Algorithms 15

Analysis

lesser

greater

x

At least half the group medians are x, which
is at least n/5 /2 = n/10 group medians.

(Assume all elements are distinct.)

CMPS 6610 Algorithms 16

Analysis

lesser

greater

x

At least half the group medians are x, which
is at least n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10elements are x.

(Assume all elements are distinct.)

CMPS 6610 Algorithms 17

Analysis

lesser

greater

x

At least half the group medians are x, which
is at least n/5 /2 = n/10 group medians.
• Therefore, at least 3 n/10elements are x.
• Similarly, at least 3 n/10elements are x.

(Assume all elements are distinct.)

CMPS 6610 Algorithms 18

• At least 3 n/10elements are x
 at most n-3 n/10elements are x

• At least 3 n/10elements are x
 at most n-3 n/10elements are x

• The recursive call to SELECT in Step 4 is
executed recursively on n-3 n/10elements.

Analysis (Assume all elements are distinct.)

Need “at most” for worst-case runtime

CMPS 6610 Algorithms 19

• Use fact that a/b (a-(b-1))/b (page 51)

• n-3 n/10 n-3·(n-9)/10 = (10n -3n +27)/10
 7n/10 + 3

• The recursive call to SELECT in Step 4 is
executed recursively on at most 7n/10+3
elements.

Analysis (Assume all elements are distinct.)

CMPS 6610 Algorithms 20

Developing the recurrence

if i = k then return x
elseif i < k

then recursively SELECT the ith
smallest element in the lower part

else recursively SELECT the (i–k)th
smallest element in the upper part

SELECT(i, n)
1. Divide the n elements into groups of 5. Find

the median of each 5-element group by rote.
2. Recursively SELECT the median x of the n/5

group medians to be the pivot.
3. Partition around the pivot x. Let k = rank(x).
4.

T(n)

Q(n)

T(n/5)

Q(n)

T(7n/10
+3)

CMPS 6610 Algorithms 21

Solving the recurrence

dnnTnTnT

 3

10

7

5

1
)(

if c is chosen large enough, e.g., c=10d

)3(
10

1
)3(

3
10

9

)33
10

7
()3

5

1
()(

nc

dncnnc

dnccn

dnncncnTBig-Oh Induction:
T(n) c(n - 3)

for Q(n)

Technical trick. This
shows that T(n) O(n)

CMPS 6610 Algorithms 22

,

Conclusions

• Since the work at each level of recursion is
basically a constant fraction (9/10) smaller,
the work per level is a geometric series
dominated by the linear work at the root.

• In practice, this algorithm runs slowly,
because the constant in front of n is large.

• The randomized algorithm is far more
practical.

Exercise: Try to divide into groups of 3 or 7.

CMPS 6610 Algorithms 23

