CMPS 6610 - Fall 2018

Flow Networks Carola Wenk

Slides adapted from slides by Charles Leiserson

Max flow and min cut

- Fundamental problems in combinatorial optimization
- Duality between max flow and min cut
- Many applications:
- Bipartite matching
- Image segmentation
- Airline scheduling
- Network reliability
- Survey design
- Baseball elimination
- Gene function prediction
- . . .

Flow networks

Definition. A flow network is a directed graph $G=(V, E)$ with two distinguished vertices: a source s and a sink t. Each edge $(u, v) \in E$ has a nonnegative capacity $c(u, v)$. If $(u, v) \notin E$, then $c(u, v)=0$. We require that if $(u, v) \in E$ then $(v, u) \notin E$.
Example:

Flow networks

Definition. A (positive) flow on G is a function $f: V \times V \rightarrow \mathbb{R}$ satisfying the following:

- Capacity constraint: For all $u, v \in V$,

$$
0 \leq f(u, v) \leq c(u, v) .
$$

- Flow conservation: For all $u \in V \backslash\{s, t\}$,

$$
\sum_{v \in V} f(u, v)-\sum_{v \in V} f(v, u)=0
$$

The value of a flow is the net flow out of the source:

$$
|f|=\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s)
$$

A flow on a network

Flow conservation (like Kirchoff's current law):

- Flow into u is $2+1=3$.
- Flow out of u is $1+2=3$.

The value of this flow is $1+2=3$.

The maximum-flow problem

Maximum-flow problem: Given a flow network G, find a flow of maximum value on G.

The value of the maximum flow is 4 .

Cuts

Definition. A cut (S, T) of a flow network $G=$ (V, E) is a partition of V such that $s \in S$ and $t \in T$.

If f is a flow on G, then the net flow across the cut is

$$
f(S, T)=\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u)
$$

The capacity of the cut is

$$
c(S, T)=\sum_{u \in S} \sum_{v \in T} c(u, v)
$$

Cuts

Another characterization of flow value

Lemma. For any flow f and any cut (S, T), we have $|f|=f(S, T)$.
Proof:

$$
\begin{aligned}
|f| & =\sum_{v \in V} f(s, v)-\sum_{v \in V} f(v, s) \\
& =\sum_{v \in V}^{0} f(s, v)-\sum_{v \in V} f(v, s)+\sum_{u \in S \backslash\{s\}}\left(\sum_{v \in V} f(u, v)-\sum_{v \in V} f(v, u)\right)^{0} \\
& =\sum_{v \in V} \sum_{v \in S} f(u, v)-\sum_{v \in V} \sum_{u \in S} f(v, u) \\
& =\sum_{v \in S} \sum_{u \in S} f(u, v)+\sum_{v \in S} \sum_{u \in S} f(u, v)-\sum_{v \in S} \sum_{u \in S} f(v, u)-\sum_{v \in T} \sum_{u \in S} f(v, u) \\
& =\sum_{v \in T} \sum_{u \in S} f(u, v)-\sum_{v \in T} \sum_{u \in S} f(v, u)=f(S, T)
\end{aligned}
$$

Upper bound on the maximum flow value

Theorem. The value of any flow is bounded from above by the capacity of any cut:
$|f| \leq c(S, T)$.
Proof.

$$
\begin{aligned}
|f| & =f(S, T) \\
& =\sum_{u \in S} \sum_{v \in T} f(u, v)-\sum_{u \in S} \sum_{v \in T} f(v, u) \\
& \leq \sum_{u \in S} \sum_{v \in T} f(u, v) \cdot \\
& \leq \sum_{u \in S} \sum_{v \in T} c(u, v) \\
& =c(S, T)
\end{aligned}
$$

Flow into the sink

Residual network

Definition. Let f be a flow on $G=(V, E)$. The residual network $G_{f}=\left(V, E_{f}\right)$ is the graph with residual capacities

$$
\begin{aligned}
& c_{f}(u, v)= \begin{cases}c(u, v)-f(u, v), & \text { if }(u, v) \in E \\
f(v, u) & \text { if }(v, u) \in E \\
0 & , \text { otherwise }\end{cases} \\
& E_{f}=\left\{(u, v) \mid c_{f}(u, v) \neq 0\right\}
\end{aligned}
$$

- Edges in E_{f} admit more flow.
- $\left|E_{f}\right| \leq 2|E|$.

Residuat intwonk

Definition. Let p be a path from s to t in G_{f}. The residual capacity of p is $c_{f}(p)=\min _{(u, v \in p}\left\{c_{f}(u, v)\right\}$. If $c_{f}(p)>0$ then p is called an augmenting path in G with respect to f. The flow value can be increased along an augmenting path p by $c_{f}(p)$.

Augmenting paths (cont.)

Max-flow, min-cut theorem

Theorem. The following are equivalent: 1. $|f|=c(S, T)$ for some cut (S, T). \longleftarrow min-cut
2. f is a maximum flow.
3. fadmits no augmenting paths.

Proof.
(1) \Rightarrow (2): Since $|f| \leq c(S, T)$ for any cut (S, T), the assumption that $|f|=c(S, T)$ implies that f is a maximum flow.
$(2) \Rightarrow(3)$: If there was an augmenting path, the flow value could be increased, contradicting the maximality of f.

Proof (continued)

2. f is a maximum flow.
3. f admits no augmenting paths.
(3) \Rightarrow (1): Define $S=\{v \in V$: there exists an augmenting path in G_{f} from s to $\left.v\right\}$, and let $T=V \backslash S$. Since f admits no augmenting paths, there is no path from s to t in G_{f}. Hence, $s \in S$ and $t \in T$, and thus (S, T) is a cut. Consider any vertices $u \in S$ and $v \in T$.

We must have $c_{f}(u, v)=0$, since if $c_{f}(u, v)>0$, then $v \in S$, not $v \in T$ as assumed. Thus, $f(u, v)=c(u, v)$ if $(u, v) \in E$ since $c_{f}(u, v)=c(u, v)-f(u, v)$. And otherwise $f(u, v)=0$. Summing over all $u \in S$ and $v \in T$ yields $f(S, T)=c(S, T)$, and since $|f|=f(S, T)$, the theorem follows.

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:
$G:$

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:
$G:$

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:
$G:$

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$
Can be slow:

$$
G:
$$

2 billion iterations on a graph with 4 vertices!

Ford-Fulkerson max-flow algorithm

Algorithm:
$f[u, v] \leftarrow 0$ for all $(u, v) \in E$
while an augmenting path p in G wrt f exists:
augment f by $c_{f}(p)$

Runtime:

- Let $\left|f^{*}\right|$ be the value of a maximum flow, and assume it is an integral value.
- The initialization takes $O(|E|)$ time
- There are at most $\left|f^{*}\right|$ iterations of the loop
- Find an augmenting path with DFS in $O(|V|+|E|)$ time
- Each augmentation takes $O(|V|)$ time
$\Rightarrow O\left(|E| \cdot\left|f^{*}\right|\right)$ time in total

Edmonds-Karp algorithm

Edmonds and Karp noticed that many people's implementations of Ford-Fulkerson augment along a breadth-first augmenting path: a shortest path in G_{f} from s to t where each edge with positive capacity has weight 1 . These implementations would always run relatively fast. Since a breadth-first augmenting path can be found in $O(|V|+|E|)$ time, their analysis, which provided the first polynomial-time bound on maximum flow, focuses on bounding the number of flow augmentations.
(In independent work, Dinic also gave polynomial-time bounds.)

Running time of EdmondsKarp

- One can show that the number of flow augmentations
(i.e., the number of iterations of the while loop) is
$O(|V||E|)$.
- Breadth-first search runs in $O(|V|+|E|)$ time
- All other bookkeeping is $O(|V|)$ per augmentation.
\Rightarrow The Edmonds-Karp maximum-flow algorithm runs in $O\left(|V||E|^{2}\right)$ time.

Monotonicity lemma

Lemma. Let $\delta(v)=\delta_{f}(s, v)$ be the breadth-first distance from s to v in G_{f}. During the EdmondsKarp algorithm, $\delta(v)$ increases monotonically.
Proof. Suppose that f is a flow on G, and augmentation produces a new flow f^{\prime}. Let $\delta^{\prime}(v)=\delta_{f^{\prime}}(s, v)$. We'll show that $\delta^{\prime}(v) \geq \delta(v)$ by induction on $\delta^{\prime}(v)$. For the base case, $\delta^{\prime}(s)=\delta(s)=0$.
For the inductive case, consider a breadth-first path $s \rightarrow$ $\sigma \rightarrow u \rightarrow v$ in $G_{f^{\prime}}$. We must have $\delta^{\prime}(v)=\delta^{\prime}(u)+1$, since subpaths of shortest paths are shortest paths. Certainly, $(u, v) \in E_{f^{\prime}}$, and now consider two cases depending on whether $(u, v) \in E_{f}$.

Case 1

Case: $(u, v) \in E_{f}$.
We have

$$
\begin{aligned}
\delta(v) & \leq \delta(u)+1 & & \text { (triangle inequality) } \\
& \leq \delta^{\prime}(u)+1 & & \text { (induction) } \\
& =\delta^{\prime}(v) & & \text { (breadth-first path), }
\end{aligned}
$$

and thus monotonicity of $\delta(v)$ is established.

Case 2

Case: $(u, v) \notin E_{f}$.
Since $(u, v) \in E_{f^{\prime}}$, the augmenting path p that produced f^{\prime} from f must have included (v, u). Moreover, p is a breadth-first path in G_{f} :

$$
p=s \rightarrow \sigma \rightarrow v \rightarrow u \rightarrow \sigma \rightarrow t .
$$

Thus, we have

$$
\begin{aligned}
\delta(v) & =\delta(u)-1 & & \text { (breadth-first path) } \\
& \leq \delta^{\prime}(u)-1 & & \text { (induction) } \\
& =\delta^{\prime}(v)-2 & & \text { (breadth-first path) } \\
& <\delta^{\prime}(v), & &
\end{aligned}
$$

thereby establishing monotonicity for this case, too. \square

Counting flow augmentations

Theorem. The number of flow augmentations in the Edmonds-Karp algorithm (Ford-Fulkerson with breadth-first augmenting paths) is $O(|V||E|)$.
Proof. Let p be an augmenting path, and suppose that we have $c_{f}(u, v)=c_{f}(p)$ for edge $(u, v) \in p$. Then, we say that (u, v) is critical, and it disappears from the residual graph after flow augmentation.
Example:

$$
c_{f}(p)=2
$$

$G_{f}:$

Counting flow augmentations

Theorem. The number of flow augmentations in the Edmonds-Karp algorithm (Ford-Fulkerson with breadth-first augmenting paths) is $O(|V||E|)$.
Proof. Let p be an augmenting path, and suppose that we have $c_{f}(u, v)=c_{f}(p)$ for edge $(u, v) \in p$. Then, we say that (u, v) is critical, and it disappears from the residual graph after flow augmentation.
Example:

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

$$
\delta(u)=5
$$

$$
\delta(v)=6
$$

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

Counting flow augmentations (continued)

The first time an edge (u, v) is critical, we have $\delta(v)=$ $\delta(u)+1$, since p is a breadth-first path. We must wait until (v, u) is on an augmenting path before (u, v) can be critical again. Let δ^{\prime} be the distance function when (v, u) is on an augmenting path. Then, we have

$$
\begin{aligned}
\delta^{\prime}(u) & =\delta^{\prime}(v)+1 & & \text { (breadth-first path) } \\
& \geq \delta(v)+1 & & \text { (monotonicity) } \\
& =\delta(u)+2 & & \text { (breadth-first path). }
\end{aligned}
$$

Example:

Running time of EdmondsKarp

Distances start out nonnegative, never decrease, and are at most $|V|-1$ until the vertex becomes unreachable. Thus, (u, v) occurs as a critical edge $O(|V|)$ times, because $\delta(v)$ increases by at least 2 between occurrences. Since the residual graph contains $O(|E|)$ edges, the number of flow augmentations is $O(|V||E|)$.

Corollary. The Edmonds-Karp maximum-flow algorithm runs in $O\left(|V||E|^{2}\right)$ time.
Proof. Breadth-first search runs in $O(|E|)$ time, and all other bookkeeping is $O(|V|)$ per augmentation.

Best to date

- The asymptotically fastest algorithm to date for maximum flow, due to King, Rao, and Tarjan, runs in $O\left(|V||E| \log _{|E| /(|V| \log |V|)}|V|\right)$ time.
- If we allow running times as a function of edge weights, the fastest algorithm for maximum flow, due to Goldberg and Rao, runs in time
$O\left(\min \left\{|V|^{2 / 3},|E|^{1 / 2}\right\} \cdot|E| \log \left(|V|^{2 /}|E|+2\right) \cdot \log C\right)$, where C is the maximum capacity of any edge in the graph.

