CMPS 6610 - Fall 2018

Divide-and-Conquer
 Carola Wenk

Slides courtesy of Charles Leiserson with changes and additions by Carola Wenk

The divide-and-conquer design paradigm

1. Divide the problem (instance) into subproblems of sizes that are fractions of the original problem size.
2. Conquer the subproblems by solving them recursively.
3. Combine subproblem solutions.

Merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays of size $n / 2$
3. Combine: Linear-time key subroutine Merge

Merge-Sort (A[0.. n-1])

1. If $n=1$, done.
2. Merge-Sort (A[$0 \ldots\lceil n / 2\rceil-1]$)
3. Merge-Sort (A[「n/2ך..n-1])
4. "Merge" the 2 sorted lists.

Merging two sorted arrays

Time $d n \in \Theta(n)$ to merge a total of n elements (linear time).

Analyzing merge sort

$T(n)$
 d_{0}
 $T(n / 2)$
 $T(n / 2)$
 dn

Merge-Sort (A[0 . . n-1])

1. If $n=1$, done.
2. Merge-Sort (A[$0 \ldots\lceil n / 27+1])$
3. Merge-Sort (A[[n/27..n-1])
4. "Merge" the 2 sorted lists.

Sloppiness: Should be $T(\lceil n / 2\rceil)+T(\lfloor n / 2\rfloor)$, but it turns out not to matter asymptotically.

Recurrence for merge sort

$$
T(n)=\left\{\begin{array}{l}
d_{0} \text { if } n=1 \\
2 T(n / 2)+d n \text { if } n>1
\end{array}\right.
$$

- But what does $T(n)$ solve to? I.e., is it $\mathrm{O}(n)$ or $\mathrm{O}\left(n^{2}\right)$ or $\mathrm{O}\left(n^{3}\right)$ or \ldots ?

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

$$
T(n)
$$

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Recursion tree

Solve $T(n)=2 T(n / 2)+d n$, where $d>0$ is constant.

Mergesort Conclusions

- Merge sort runs in $\Theta(n \log n)$ time.
- $\Theta(n \log n)$ grows more slowly than $\Theta\left(n^{2}\right)$.
- Therefore, merge sort asymptotically beats insertion sort in the worst case.
- In practice, merge sort beats insertion sort for $n>30$ or so. (Why not earlier?)

Recursion-tree method

- A recursion tree models the costs (time) of a recursive execution of an algorithm.
- The recursion-tree method can be unreliable, just like any method that uses ellipses (...).
- It is good for generating guesses of what the runtime could be.

But: Need to verify that the guess is correct. \rightarrow Induction (substitution method)

Substitution method

The most general method to solve a recurrence (prove O and Ω separately):

1. Guess the form of the solution:
(e.g. using recursion trees, or expansion)
2. Verify by induction (inductive step).
3. Solve for O-constants n_{0} and c (base case of induction)

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1:

$f(n)=O\left(n^{\log b a-\varepsilon}\right) \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$
for some $\varepsilon>0$
CASE 2:
$f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
for some $\mathrm{k} \geq 0$
CASE 3:
(i) $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$
for some $\varepsilon>0$
and (ii) $a f(n / b) \leq c f(n)$
for some $c<1$

Powering a number

Problem: Compute a^{n}, where $n \in \boldsymbol{N}$.
Naive algorithm: $\Theta(n)$.
Divide-and-conquer algorithm: (recursive squaring)

$$
\begin{gathered}
a^{n}= \begin{cases}a^{n / 2} \cdot a^{n / 2} & \text { if } n \text { is even; } \\
a^{(n-1) / 2} \cdot a^{(n-1) / 2} \cdot a & \text { if } n \text { is odd. }\end{cases} \\
T(n)=T(n / 2)+\Theta(1) \Rightarrow T(n)=\Theta(\log n)
\end{gathered}
$$

The master method

The master method applies to recurrences of the form

$$
T(n)=a T(n / b)+f(n),
$$

where $a \geq 1, b>1$, and f is asymptotically positive.

Master Theorem

$$
T(n)=a T(n / b)+f(n)
$$

CASE 1:

$f(n)=O\left(n^{\log b a-\varepsilon}\right) \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$
for some $\varepsilon>0$
CASE 2:
$f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right) \quad \Rightarrow T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$
for some $\mathrm{k} \geq 0$
CASE 3:
(i) $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$
for some $\varepsilon>0$
and (ii) $a f(n / b) \leq c f(n)$
for some $c<1$

Example: merge sort

1. Divide: Trivial.
2. Conquer: Recursively sort 2 subarrays.
3. Combine: Linear-time merge.

$$
T(n)=2 T(n / 2)+O(n) .
$$

\# subproblems subproblem size work dividing and combining

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 2}=n^{1}=n \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(n \log n) .
\end{aligned}
$$

Example: binary search

$$
\begin{aligned}
& n^{\log _{b} a}=n^{\log _{2} 1}=n^{0}=1 \Rightarrow \text { CASE } 2(k=0) \\
& \quad \Rightarrow T(n)=\Theta(\log n) .
\end{aligned}
$$

How to apply the theorem

Compare $f(n)$ with $n^{\log _{b} a}$:

1. $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially slower than $n^{\log _{b} a}$ (by an n^{ε} factor).
Solution: $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

2. $f(n)=\Theta\left(n^{\log _{b} a} \log ^{k} n\right)$ for some constant $k \geq 0$.

- $f(n)$ and $n^{\log _{b} a}$ grow at similar rates.

Solution: $T(n)=\Theta\left(n^{\log _{b} a} \log ^{k+1} n\right)$.

How to apply the theorem

Compare $f(n)$ with $n^{\log _{b} a}$:

3. $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$.

- $f(n)$ grows polynomially faster than $n^{\log _{b} a}$ (by an n^{ε} factor),
and $f(n)$ satisfies the regularity condition that $a f(n / b) \leq c f(n)$ for some constant $c<1$.
Solution: $T(n)=\Theta(f(n))$.

Master theorem: Examples

Ex. $T(n)=4 T(n / 2)+\sqrt{n}$ $a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=\sqrt{n}$. Case 1: $f(n)=O\left(n^{2-\varepsilon}\right)$ for $\varepsilon=1.5$.
$\therefore T(n)=\Theta\left(n^{2}\right)$.
Ex. $T(n)=4 T(n / 2)+n^{2}$ $a=4, b=2 \Rightarrow n^{\log _{b} a}=n^{2} ; f(n)=n^{2}$.
CASE 2: $f(n)=\Theta\left(n^{2} \log ^{0} n\right)$, that is, $k=0$.
$\therefore T(n)=\Theta\left(n^{2} \log n\right)$.

Master theorem: Examples

$$
\begin{aligned}
& \text { Ex. } T(n)=4 T(n / 2)+n^{3} \\
& a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{3} . \\
& \text { CASE 3: } f(n)=\Omega\left(n^{2+\varepsilon}\right) \text { for } \varepsilon=1 \\
& \text { and } 4(n / 2)^{3} \leq c n^{3} \text { (reg. cond.) for } c=1 / 2 . \\
& \therefore T(n)=\Theta\left(n^{3}\right) . \\
& \text { Ex. } T(n)=4 T(n / 2)+n^{2} / \log n \\
& a=4, b=2 \Rightarrow n^{\log b a}=n^{2} ; f(n)=n^{2} / \log n \text {. } \\
& \text { Master method does not apply. In particular, } \\
& \text { for every constant } \varepsilon>0 \text {, we have } \log n \in o\left(n^{\varepsilon}\right) .
\end{aligned}
$$

Conclusion

- Divide and conquer is just one of several powerful techniques for algorithm design.
- Divide-and-conquer algorithms can be analyzed using recurrences and the master method.
- Can lead to more efficient algorithms

Convex Hull Problem

- Given a set of pins on a pinboard and a rubber band around them. How does the rubber band look when it snaps tight?
- The convex hull of a point set is one of the simplest shape
 approximations for a set of points.

Convex Hull: Divide \& Conquer

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A

Recursively compute the convex hull of B

- Merge the two convex hulls

Merging

- Find upper and lower tangent
- With those tangents the convex hull of $A \cup B$ can be computed from the convex hulls of A and the convex hull of B in $\mathrm{O}(n)$ linear time

A
B

Finding the lower tangent

$\mathrm{a}=$ rightmost point of A
 $b=$ leftmost point of B

while $\mathrm{T}=\mathrm{ab}$ not lower tangent to both convex hulls of A and B do $\{$
while T not lower tangent to convex hull of A do \{ $a=a-1$
\}
while T not lower tangent to
convex hull of B do \{

CMPS 6610 Algorithms

A

right turn

Convex Hull: Runtime

- Preprocessing: sort the points by xcoordinate
- Divide the set of points into two sets \mathbf{A} and \mathbb{B} :
- A contains the left $\lfloor n / 2\rfloor$ points,
- B contains the right $\lceil\mathrm{n} / 2\rceil$ points
- Recursively compute the convex hull of A

Recursively compute the convex hull of B

- Merge the two convex hulls
$\mathrm{O}(n \log n)$ just once
$\mathrm{O}(1)$
$\mathrm{T}(n / 2)$
$T(n / 2)$
$\mathrm{O}(n)$

Convex Hull: Runtime

- Runtime Recurrence:

$$
\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{cn}
$$

- Solves to $\mathrm{T}(n)=\Theta(n \log n)$

