CMPS 6610 – Fall 2018

Union-Find Data Structures

Carola Wenk

Slides courtesy of Charles Leiserson with small changes by Carola Wenk

Disjoint-set data structure (Union-Find)

Problem:

- Maintain a dynamic collection of *pairwise-disjoint* sets $S = \{S_1, S_2, ..., S_r\}$.
- Each set S_i has one element distinguished as the representative element, $rep[S_i]$.
- Must support 3 operations:
 - MAKE-SET(x): adds new set $\{x\}$ to S

with $rep[\{x\}] = x$ (for any $x \notin S_i$ for all i)

• UNION(x, y): replaces sets S_x, S_y with $S_x \cup S_y$ in S

(for any x, y in distinct sets S_x , S_y)

• FIND-SET(x): returns representative $rep[S_x]$ of set S_x containing element x

CMPS 6610 Algorithms

Union-Find Example

MAKE-SET(2)MAKE-SET(3)MAKE-SET(4)FIND-SET(4) = 4UNION(2, 4)FIND-SET(4) = 2MAKE-SET(5)UNION(4, 5)

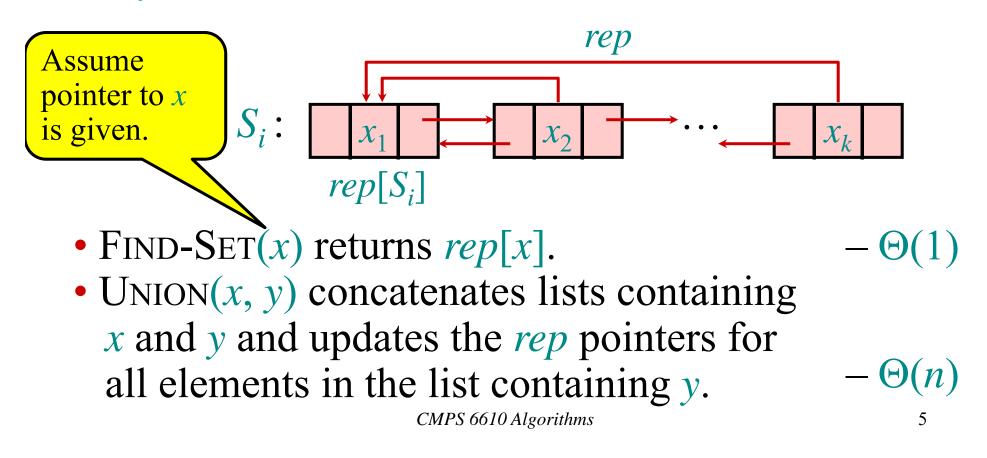
- $S = \{\}$ $S = \{\{\underline{2}\}\}$ $S = \{\{\underline{2}\}\}$ $S = \{\{\underline{2}\}, \{\underline{3}\}\}$ $S = \{\{\underline{2}\}, \{\underline{3}\}, \{\underline{4}\}\}$
- $S = \{\{\underline{2}, 4\}, \{\underline{3}\}\}$
- $S = \{\{\underline{2}, 4\}, \{\underline{3}\}, \{\underline{5}\}\}\$ $S = \{\{\underline{2}, 4, 5\}, \{\underline{3}\}\}\$

Plan of attack

- We will build a simple disjoint-set data structure that, in an amortized sense, performs significantly better than Θ(log n) per op., even better than Θ(log n), Θ(log log n), ..., but not quite Θ(1).
- To reach this goal, we will introduce two key *tricks*. Each trick converts a trivial Θ(n) solution into a simple Θ(log n) amortized solution. Together, the two tricks yield a much better solution.
- First trick arises in an augmented linked list. Second trick arises in a tree structure.

Augmented linked-list solution

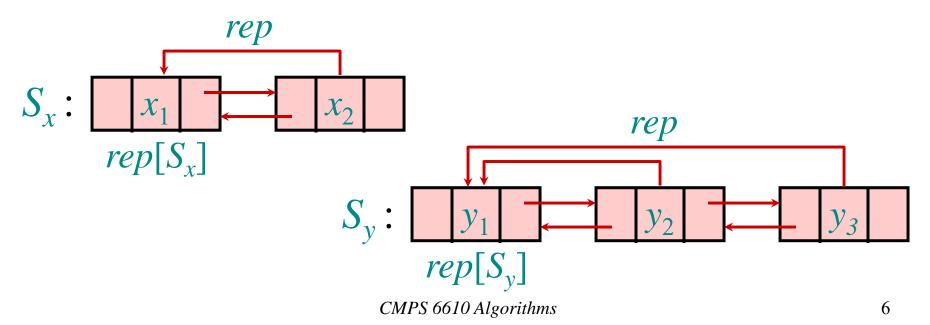
Store $S_i = \{x_1, x_2, ..., x_k\}$ as unordered doubly linked list. **Augmentation:** Each element x_j also stores pointer $rep[x_j]$ to $rep[S_i]$ (which is the front of the list, x_1).



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

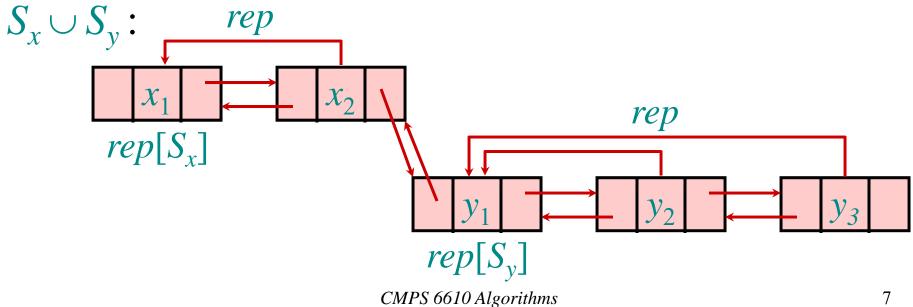
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



Example of augmented linked-list solution

Each element x_i stores pointer $rep[x_i]$ to $rep[S_i]$. UNION(x, y)

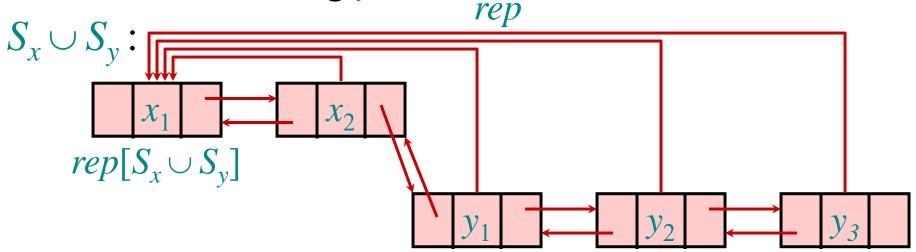
- concatenates the lists containing x and y, and
- updates the *rep* pointers for all elements in the list containing y.



Example of augmented linked-list solution

Each element x_j stores pointer $rep[x_j]$ to $rep[S_i]$. UNION(x, y)

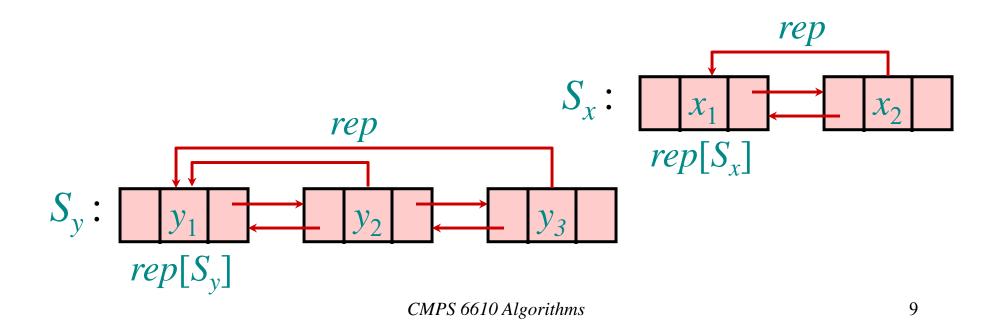
- concatenates the lists containing *x* and *y*, and
- updates the *rep* pointers for all elements in the list containing *y*.



Alternative concatenation

UNION(x, y) could instead

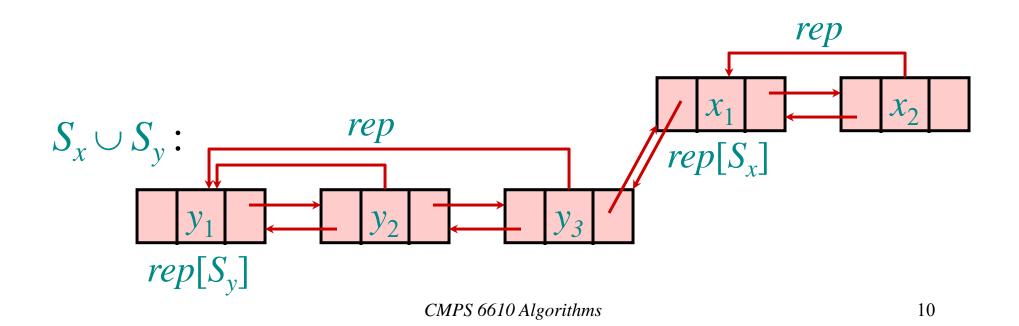
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

UNION(x, y) could instead

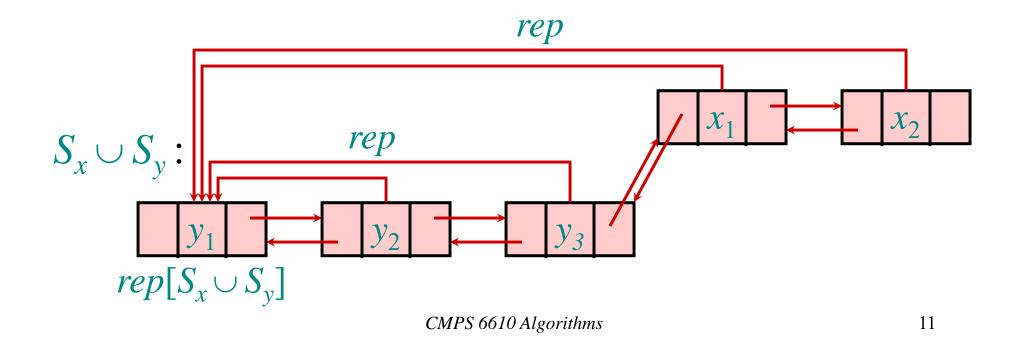
- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Alternative concatenation

UNION(x, y) could instead

- concatenate the lists containing y and x, and
- update the *rep* pointers for all elements in the list containing *x*.



Trick 1: Smaller into larger (weighted-union heuristic)

To save work, concatenate the smaller list onto the end of the larger list. Cost = Θ (length of smaller list). Augment list to store its *weight* (# elements).

- Let *n* denote the overall number of elements (equivalently, the number of MAKE-SET operations).
- Let *m* denote the total number of operations.
- Let *f* denote the number of FIND-SET operations.

Theorem: Cost of all UNION's is $O(n \log n)$. **Corollary:** Total cost is $O(m + n \log n)$.

Analysis of Trick 1 (weighted-union heuristic)

Theorem: Total cost of UNION's is $O(n \log n)$.

Proof. • Monitor an element x and set S_x containing it.

- After initial MAKE-SET(x), weight[S_x] = 1.
- Each time S_x is united with S_y :
 - if weight $[\tilde{S}_y] \ge weight[S_x]$:
 - pay 1 to update rep[x], and
 - $-weight[S_x]$ at least doubles (increases by weight[S_y]).
 - if $weight[S_y] < weight[S_x]$:
 - pay nothing, and
 - $-weight[S_x]$ only increases.

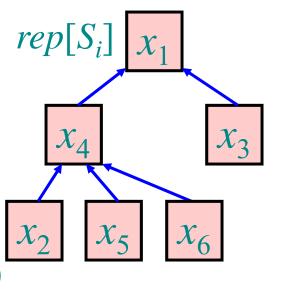
Thus pay $\leq \log n$ for *x*.

Disjoint set forest: Representing sets as trees

Store each set $S_i = \{x_1, x_2, ..., x_k\}$ as an unordered, potentially unbalanced, not necessarily binary tree, storing only *parent* pointers. *rep*[S_i] is the tree root.

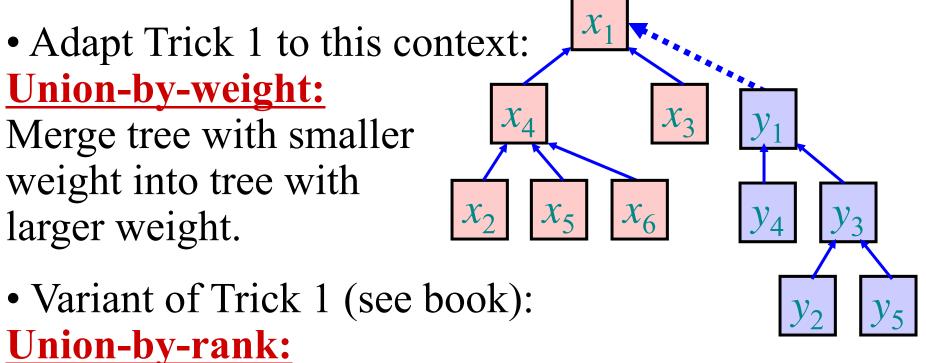
- MAKE-SET(x) initializes x as a lone node. $-\Theta(1)$
- FIND-SET(x) walks up the tree containing x until it reaches the root. -Θ(depth[x])
- UNION(x, y) calls FIND-SET twice and concatenates the trees containing x and y...-Θ(depth[x])

$$S_i = \{x_1, x_2, x_3, x_4, x_5, x_6\}$$



Trick 1 adapted to trees

• UNION(x, y) can use a simple concatenation strategy: Make root FIND-SET(y) a child of root FIND-SET(x).



rank of a tree = its height Example: $UNION(x_4, y_2)$

Trick 1 adapted to trees (union-by-weight)

- Height of tree is logarithmic in weight, because:
 - Induction on *n*
 - Height of a tree *T* is determined by the two subtrees T_1, T_2 that *T* has been united from.
 - Inductively the heights of T_1 , T_2 at most the logs of their weights.
 - If T_1 and T_2 have different heights: height(T) = max(height(T_1), height(T_2)) $\leq \max(\log \operatorname{weight}(T_1), \log \operatorname{weight}(T_2))$

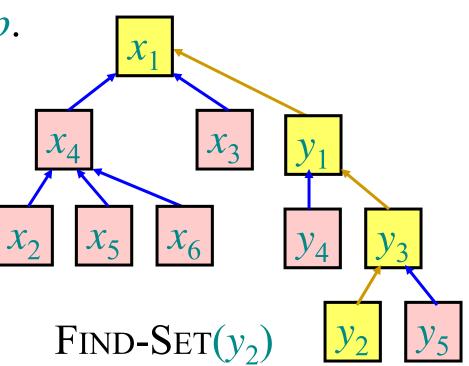
 $\leq \ln \alpha (\log \operatorname{weight}(T_1), \operatorname{Res})$ $< \log \operatorname{weight}(T)$

- If T_1 and T_2 have the same heights:
 - (Assume weight(T_1) \leq weight(T_2)) height(T) = height(T_1) + 1 \leq log (2*weight(T_1))
- Thus the total cost of any *m* operations is $O(m \log n)$. *CMPS 6610 Algorithms*

When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

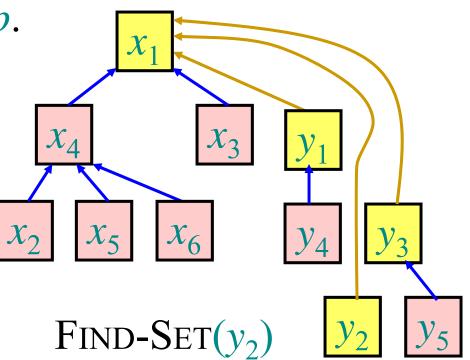
Cost of FIND-SET(x) is still $\Theta(depth[x])$.



When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

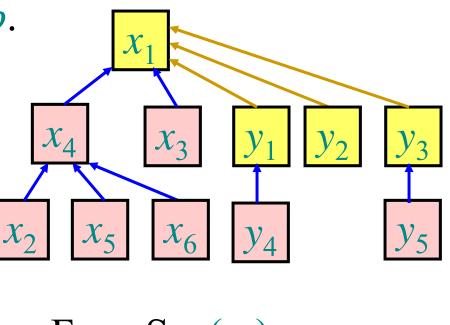
Cost of FIND-SET(x) is still $\Theta(depth[x])$.



When we execute a FIND-SET operation and walk up a path p to the root, we know the representative for all the nodes on path p.

Path compression makes all of those nodes direct children of the root.

Cost of FIND-SET(x) is still $\Theta(depth[x])$.



FIND-SET (y_2)

• Note that UNION(*x*, *y*) first calls FIND-SET(*x*) and FIND-SET(*y*). Therefore path compression also affects UNION operations.

Analysis of Trick 2 alone

Theorem: Total cost of FIND-SET's is $O(m \log n)$. *Proof:* By amortization. Omitted.

Analysis of Tricks 1 + 2 for disjoint-set forests

Theorem: In general, total cost is $O(m \alpha(n))$.

Proof: Long, tricky proof by amortization. Omitted.

Ackermann's function
$$A$$
, and
it's "inverse" α
Define $A_k(j) = \begin{cases} j+1 & \text{if } k = 0, \\ A_{k-1}^{(j+1)}(j) & \text{if } k \ge 1. \\ A_0(j) = j+1 & A_0(1) = 2 \\ A_1(j) \sim 2j & A_1(1) = 3 \\ A_2(j) \sim 2j 2^j > 2^j & A_2(1) = 7 \\ A_3(1) = 2047 \\ j & 2^{2^{j}} \\ A_3(1) = 2047 \\ A_4(j) & \text{is a lot bigger.} \quad A_4(1) > 2^{2^{j}} \end{cases}$ 2048 times
Define $\alpha(n) = \min \{k : A_k(1) \ge n\} \le 4$ for practical n .

CMPS 6610 Algorithms